Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4247–4256 | Cite as

Morphology and composition of nickel–boron nanolayer coating on boron carbide particles

  • Hongying Dong
  • Xiaojing Zhu
  • Kathy LuEmail author
Article

Abstract

This work is focused on electroless coating of Ni–B nanolayer on B4C particle surfaces. The B4C particles used are approximately 2 μm in average size. Effects of activation agent PdCl2, complexing agent C2H8N2, and reducing agent NaBH4 addition rate are studied. The solids loading of B4C is 0.625 g/L and the concentration of Ni2+ ions is 0.004 mol/L in the electroless coating solution. Scanning electron microscopy (SEM) shows that when B4C:Pd2+ molar ratio is 1:0.005, a Ni–B nanolayer with the smallest Ni–B nodule size covers the B4C particle surfaces. Complexing agent C2H8N2 decreases Ni2+ ion release rate. Ni:C2H8N2 ratio of 1:6 is the preferred complexing agent amount for achieving a continuous Ni–B nanolayer. The Ni–B nanolayer formation is also strongly dependent on the rate that Ni2+ ions are reduced. Slow Ni2+ reduction leads to increased Ni content in the Ni–B nanolayer. When the above three factors are combined at the optimal values for the electroless coating process, well-defined Ni–B nanolayer is obtained. SEM cross section analysis shows the Ni–B nanolayer completely covers the B4C particles with less than 55 nm thickness.

Keywords

NaBH4 PdCl2 Fair Lawn Bond Peak Electroless Coating 

Notes

Acknowledgement

The authors acknowledge the financial support from National Science Foundation under grant No. DMI-0620621.

References

  1. 1.
    Lide DR (2008) CRC handbook of chemistry and physics, 88th edn. CRC Press, Boca Raton, FL, p 12Google Scholar
  2. 2.
    Chen MW, Mccauley JW, Hemker KJ (2003) Science 299:1563. doi: https://doi.org/10.1126/science.1080819 CrossRefGoogle Scholar
  3. 3.
    Jung CH, Lee SJ (2005) Int J Refract Met Hard Mater 23:171CrossRefGoogle Scholar
  4. 4.
    Thévenot F (1990) J Eur Ceram Soc 6:205. doi: https://doi.org/10.1016/0955–2219(90)90048-K CrossRefGoogle Scholar
  5. 5.
    Tom RT, Nair AS, Singh N, Aslam M, Nagendra CL, Philip R, Vijayamohanan K, Pradeep T (2003) Langmuir 19:3439. doi: https://doi.org/10.1021/la0266435 CrossRefGoogle Scholar
  6. 6.
    Bhattacharjee B, Hsu CH, Lu CH, Chang WH (2006) Phys E 33:388. doi: https://doi.org/10.1016/j.physe.2006.04.007 CrossRefGoogle Scholar
  7. 7.
    Elder SH, Cot FM, Su Y, Heald SM, Tyryshkin AM, Bowman MK, Gao Y, Joly AG, Balmer ML, Kolwaite AC, Magrini KA, Blake DM (2000) J Am Chem Soc 122:5138. doi: https://doi.org/10.1021/ja992768t CrossRefGoogle Scholar
  8. 8.
    Ming M, Chen Y, Katz A (2002) Langmuir 18:8566. doi: https://doi.org/10.1021/la026055r CrossRefGoogle Scholar
  9. 9.
    Lu Y, Yin YD, Li ZY, Xia YA (2002) Nano Lett 2:785. doi: https://doi.org/10.1021/nl025598i CrossRefGoogle Scholar
  10. 10.
    Monir Vaghefi SM, Saatchi A, Ebrahimian-Hoseinabadi M (2003) Surf Coat Technol 168:259. doi: https://doi.org/10.1016/S0257-8972(02)00926-X CrossRefGoogle Scholar
  11. 11.
    Baskaran I, Kumar RS, Narayanan TSNS, Stephen A (2006) Surf Coat Technol 200:6888. doi: https://doi.org/10.1016/j.surfcoat.2005.10.013 CrossRefGoogle Scholar
  12. 12.
    Rao Q-L, Bi G, Lu Q-H, Wang H-W, Fan X-L (2005) Appl Surf Sci 240:28. doi: https://doi.org/10.1016/j.apsusc.2004.07.059 CrossRefGoogle Scholar
  13. 13.
    Oraon B, Majumdar G, Ghosh B (2007) Mater Des 28:2138. doi: https://doi.org/10.1016/j.matdes.2006.05.017 CrossRefGoogle Scholar
  14. 14.
    Ebrahimian-Hosseinabadi M, Azari-Dorcheh K, Moonir Vaghefi SM (2006) Wear 260:123. doi: https://doi.org/10.1016/j.wear.2005.01.020 CrossRefGoogle Scholar
  15. 15.
    Arai S, Endo M, Hashizume S, Shimojima Y (2004) Electrochem Commun 6:1029. doi: https://doi.org/10.1016/j.elecom.2004.08.001 CrossRefGoogle Scholar
  16. 16.
    Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS (1999) Chem Mater 11:2115. doi: https://doi.org/10.1021/cm990078i CrossRefGoogle Scholar
  17. 17.
    Wang F, Arai S, Park KC, Takeuchi K, Kim YJ, Endo M (2006) Carbon 44:1307. doi: https://doi.org/10.1016/j.carbon.2005.12.049 CrossRefGoogle Scholar
  18. 18.
    Chen YJ, Cao MS, Xu Q, Zhu J (2003) Surf Coat Technol 172:90. doi: https://doi.org/10.1016/S0257-8972(03)00320-7 CrossRefGoogle Scholar
  19. 19.
    Vélez M, Quiñones H, Giampaolo ARD, Lira J, Grigorescu IC (1999) Int J Refract Met Hard Mater 17:99. doi: https://doi.org/10.1016/S0263-4368(98)00035-3 CrossRefGoogle Scholar
  20. 20.
    Zhu XJ, Dong H, Lu K (2008) Surf Coat Technol 202:2927. doi: https://doi.org/10.1016/j.surfcoat.2007.10.021 CrossRefGoogle Scholar
  21. 21.
    Brandow SL, Dressick WJ, Marrian CRK, Chow GM, Calvert JM (1995) J Electrochem Soc 142:2233. doi: https://doi.org/10.1149/1.2044280 CrossRefGoogle Scholar
  22. 22.
    Zhu XJ, Lu K (2006) In Proceeding of 2006 materials science & technology international conference, innovative processing and synthesis of ceramics, glasses and composites, Cincinnati, OH, October, organized by N. P. Bansal and J. P. Singh, p 421Google Scholar
  23. 23.
    Delaunois F, Petitjean JP, Lienard P, Jacob-Duliere M (2000) Surf Coat Technol 124:201. doi: https://doi.org/10.1016/S0257-8972(99)00621-0 CrossRefGoogle Scholar
  24. 24.
    Mondal A, Sabyashachi N, Mondal A, Bandopadhyay S, Gangopadhyay U, Saha H (2004) Mater Res Bull 39:2187. doi: https://doi.org/10.1016/j.materresbull.2004.08.002 CrossRefGoogle Scholar
  25. 25.
    Narayanan T, Seshadri S (2004) J Alloys Compd 365:197. doi: https://doi.org/10.1016/S0925-8388(03)00680-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations