Journal of Materials Science

, Volume 43, Issue 12, pp 4236–4246 | Cite as

Analytical study of tensile behaviors of UHMWPE/nano-epoxy bundle composites

  • S. Jana
  • B. R. Hinderliter
  • W. H. ZhongEmail author


Ultra-high molecular polyethylene (UHMWPE) fiber reinforced nano-epoxy and pure epoxy composites in bundle form were prepared and tested for tensile properties. UHMWPE fiber composites are well known for their superior tensile performance, and this work was conducted to assess the effect of adding nanoadditives to the resin and to evaluate possible enhancements or degradations to that attribute. The results showed that tensile tests on various types of UHMWPE fibers/nano-epoxy bundle composites resulted in an increase in modulus of elasticity due to the addition of small amounts of reactive nanofibers (r-GNFs) to epoxy matrix. It was observed that the modulus of elasticity of the composite bundles depended on both volume fractions of the matrix and the weight percent (wt%) of r-GNFs in the matrix. A non-linear relationship was established among them and an optimal modulus was determined by calculation. A three-dimensional surface plot considering these two parameters has been generated which gives an indication of change in modulus of elasticity with respect to volume fraction of matrix and wt% of r-GNFs in the matrix. A Weibull analysis of tensile strengths for the various bundle composites was performed and their Weibull moduli were compared. The results showed that presence of r-GNFs in the composites increased the strength effectively, and 0.3 wt% r-GNFs based composites showed the highest strength. An important ancillary finding is that optimum tensile values are a function not only of the above parameters, but also strongly influenced by the addition of diluents which control the viscosity of the blend.


UHMWPE Weibull Modulus Pure Epoxy Epoxy Network UHMWPE Fiber 



The authors gratefully acknowledge the support from NASA through the grant NNM04AA62G, Dr. W.H. Zhong also gratefully acknowledges Dr. Charles M. Lukehart and Mr. Jiang Li (Vanderbilt University) for providing the derivatized graphitic carbon nanofibers, and Mr. M. T. Wingert for making contribution to the TEM and SEM imaging work.


  1. 1.
    Jang BZ (1994) Advanced polymer composites: principles and applications. ASM InternationalGoogle Scholar
  2. 2.
    Ujvari T, Toth A, Bertoti I, Nagy PM, Juhasz A (2001) Solid State Ionics 141:225. doi: CrossRefGoogle Scholar
  3. 3.
    Torrisi L, Gammino S, Mezzasalma AM, Visco AM, Badziak J, Parys P, Wolowski J, Woryna E, Laska L, Pfeifer M, Rohlena K, Boody FP (2004) Appl Surf Sci 227:1149. doi: CrossRefGoogle Scholar
  4. 4.
    Kostov KG, Ueda M, Tan IH, Leite NF, Beleto AF, Gomes GF (2004) Surf Coat Technol 186:287. doi: CrossRefGoogle Scholar
  5. 5.
    Chen JS, Lau SP, Sun Z, Tay BK, Yu GQ, Zhu YF, Zhu DZ, Xu HJ (2001) Surf Coat Technol 138:33. doi: CrossRefGoogle Scholar
  6. 6.
    Cohen Y, Rein DM, Vaykhansky L (1997) Compos Sci Technol Vol 57:1149. doi: CrossRefGoogle Scholar
  7. 7.
    Wang J, Smith K Jr (1999) Polymer 40:7261. doi: CrossRefGoogle Scholar
  8. 8.
    Dilsiz N, Ebert E, Weisweiler W, Akovali G (1995) J Colloid Interf Sci 170:241. doi: CrossRefGoogle Scholar
  9. 9.
    Drzal L, Madhukar M (1993) J Mater Sci 28:569. doi: CrossRefGoogle Scholar
  10. 10.
    Zhamu A, Wingert MT, Jana S, Zhong WH, Stone JJ (2007) Composites A 38:699. doi: CrossRefGoogle Scholar
  11. 11.
    Neema S, Salehi-Khojin A, Zhamu A, Zhong WH, Jana S, Gan YX (2006) J Colloid Interface Sci 299:332 doi: CrossRefGoogle Scholar
  12. 12.
    Zhamu A, Zhong WH, Stone JJ (2006) Compos Sci Technol 66:2736. doi: CrossRefGoogle Scholar
  13. 13.
    Sandler J, Shafter TP, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967. doi: CrossRefGoogle Scholar
  14. 14.
    Yue ZR, Jiang W, Wang L, Toghiani LH, Gardner SD, Pittman CU (1999) Carbon 37:1607. doi: CrossRefGoogle Scholar
  15. 15.
    Pittman CU, He GR, Wu B, Gardener SD (1997) Carbon 35:313Google Scholar
  16. 16.
    Wong EW, Sheehan PE, Lieber CM (1997) Science 227:1971. doi: CrossRefGoogle Scholar
  17. 17.
    Chen XH, Wang JX, Yang HS, Wu GT, Zhang XB, Li WZ (2001) Diamond Relat Mater 10:2057. doi: CrossRefGoogle Scholar
  18. 18.
    Li J, Vergne MJ, Mowles ED, Zhong WH, Hercules DM, Lukehart CM (2005) Carbon 43:2883. doi: CrossRefGoogle Scholar
  19. 19.
    Vogelson CT, Koide Y, Alemany LB, Barron AR (2002) Chem Mater 12:795. doi: CrossRefGoogle Scholar
  20. 20.
    Choi YK, Sugimoto K, Song S, Gotoh Y, Ohkoshi Y, Endo M (2005) Carbon 43:2199. doi: CrossRefGoogle Scholar
  21. 21.
    Zilg C, Dietsche F, Hoffmann B, Dietrich C, Mülhaupt R (2001) Macromol Symp 169(Fillers and Filled Polymers):65CrossRefGoogle Scholar
  22. 22.
    Lan T, Cho J, Liang Y, Maul P (2001) Nanocomposites-2001, Chicago, 25–27 JuneGoogle Scholar
  23. 23.
    Gilbert EN, Hayes BS, Seferis JC (2002) Nanoparticle modification of epoxy based film adhesives, Proc. SAMPE, Covina, CA, p 41Google Scholar
  24. 24.
    Spindler-Ranta S, Bakis CE (2002) Carbon Nanotube reinforcement of a filament winding resin. Proc. SAMPE, Coniva, CA, p 1775Google Scholar
  25. 25.
    Chen C, Curliss D (2001) SAMPE J 37:11Google Scholar
  26. 26.
    Rice BP, Chen C, Cloos L, Curliss D (2001) SAMPE J 37:7Google Scholar
  27. 27.
    Becker O, Barely R, Simon G (2002) Polymer 43:4365. doi: CrossRefGoogle Scholar
  28. 28.
    Becker O, Cheng YB, Varley RJ, Simon GP (2003) Macromolecules 36:1616. doi: CrossRefGoogle Scholar
  29. 29.
    Li J, Vergne MJ, Mowles ED, Zhong WH, Hercules DM, Lukehart CM (2005) Carbon 43:2883. doi: CrossRefGoogle Scholar
  30. 30.
    Zhong WH, Li J, Xu LR, Lukehart CM (2005) Polym Compos 26:128. doi: CrossRefGoogle Scholar
  31. 31.
    Wingert MT (2004) Improvement of interfacial adhesion between UHMWPE fiber and epoxy matrix using graphitic carbon nano-fiber, a master thesis, North Dakota State University, Department of Mechanical EngineeringGoogle Scholar
  32. 32.
    Jana S, Zhamu A, Zhong WH, Gan YH (2006) J Adhes 82:1157. doi: CrossRefGoogle Scholar
  33. 33.
    Jana S, Zhamu A, Gun YX, Zhong WH, Stone JJ (2008) Mater Manuf Process 23:102CrossRefGoogle Scholar
  34. 34.”, Holmgren DE ( Brandon University, Brandon, MB, Canada, Ogilvie JF ( and Monagan M ( Center for Experimental and Constructive Mathematics, Simon Fraser University, Vancouver BC, Canada
  35. 35.
    Johnson JA, Barbato MJ, Hopkins SR, O’Malley MJ (2003) Prog Organ Coat 47:198. doi: CrossRefGoogle Scholar
  36. 36.
    Fanelli M, Feke DL, Manas-Zloczower I (2006) Chem Eng Sci 61:473. doi: CrossRefGoogle Scholar
  37. 37.
    Sun CJ, Saffari P, Sadeghipour K, Baran G (2005) Mater Sci Eng: A 405:287. doi: CrossRefGoogle Scholar
  38. 38.
    Qing Z, Frogley MD, Wagner HD (2002) Compos Sci Technol 61:2139Google Scholar
  39. 39.
    Peterlik H (1995) J Mater Sci 30:1972. doi: CrossRefGoogle Scholar
  40. 40.
    Afferrante L, Ciavarella M, Valenza E (2006) Int J Solids Struct 43:5147. doi: CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Jana S, Zhong WH, Gan YX (2007) Mater Sci Eng A l445–1446:106CrossRefGoogle Scholar
  43. 43.
    Salehi-Khojin A, Stone JJ, Zhong WH (2007) J Compos Mater 41:1163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Department of Coatings and PolymersNorth Dakota State UniversityFargoUSA

Personalised recommendations