Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4226–4229 | Cite as

Martensitic phase transformation in single crystal Co5Ni2Ga3

  • Peng ChenEmail author
  • Ke Chen
  • Guang Heng Wu
  • Xi Xiang Zhang
Article
  • 84 Downloads

Abstract

The magnetic, thermal, and transport properties of martensitic phase transformation in single crystal Co5Ni2Ga3 have been investigated. The single crystal Co5Ni2Ga3 shows martensitic transformation at 251 K on cooling and 254 K on warming. Large jumps in the temperature-dependent resistance curve, temperature-dependent magnetization curve, and temperature-dependent thermal conductivity curve are observed at martensitic transformation temperature (TM). Negative magnetoresistance due to spin disorder scattering was observed in Co5Ni2Ga3 single crystal at all temperature range. The temperature-dependent negative magnetoresistance shows a peak at TM, which indicates that the spin disorder increases in the process of phase transition. Co5Ni2Ga3 sample exhibits a temperature dependence of thermal conductivity κ(T) (dκ/dT > 0) due to electrons being above temperature 100 K.

Keywords

Austenite Martensite Applied Magnetic Field Heusler Alloy Martensitic Phase Transformation 

Notes

Acknowledgements

In this paper was supported by a grant from the Science & Technology Commission, Chongqing, China (Project No. CSTC 2006BB2024 and SWNUF 2005002). XX Zhang would like to thank the support from HKUST grant 6059/02E.

References

  1. 1.
    de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024. Ishida S, Masaki T, Fujii S, Asano S (1998) Physica B 245:1. Fujii S, Sugimura S, Ishida S, Asano S (1990) J Phys Condens Matter 2:8583. doi: https://doi.org/10.1088/0953-8984/2/43/004 Google Scholar
  2. 2.
    Webster PJ, Ziebeck KRA, Town SL, Peak MS (1984) Philos Mag B 49:295. Fujita A, Fukamichi K, Gejima F, Kainuma R, Isshida K (2001) Appl Phys Lett 77:3054Google Scholar
  3. 3.
    Furuya Y, Hagood NW, Kimura H, Watanabe T (1998) Mater Trans JIM 39:1248CrossRefGoogle Scholar
  4. 4.
    Wuttig M, Li J, Craciunescu C (2001) Scr Mater 44:2393. doi: https://doi.org/10.1016/S1359-6462(01)00939-3 CrossRefGoogle Scholar
  5. 5.
    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Isshida K (2001) Appl Phys Lett 79:3290. doi: https://doi.org/10.1063/1.1418259 CrossRefGoogle Scholar
  6. 6.
    Liu ZH, Zhang M, Cui YT, Zhou YQ, Wang WH, Wu GH, Zhang XX, Xiao G (2003) Appl Phys Lett 82:424. Liu ZH, Hu HN, Liu GD, Cui YT, Zhang M, Chen JL, Wu GH (2004) Phys Rev B 69:134415. doi: https://doi.org/10.1103/PhysRevB.69.134415
  7. 7.
    Chen F, Wang HB, Zheng YF, Cai W, Zhao LC (2005) J Mater Sci 40(1):219. doi: https://doi.org/10.1007/s10853-005-5712-3 CrossRefGoogle Scholar
  8. 8.
    Pirge G, Hyatt CV, Altintas S (2004) J Mater Sci Proc Tech 155–156:1266. doi: https://doi.org/10.1016/j.jmatprotec.2004.04.225 CrossRefGoogle Scholar
  9. 9.
    Meng FB, Li YX, Liu HY, Qu JP, Zhang M, Chen JL, Wu GH (2004) J Mater Sci Tech 20(6):697Google Scholar
  10. 10.
    Li YX, Liu HY, Meng FB, Yan LQ, Liu GD, Dai XF, Zhang M, Liu ZH, Chen JL, Wu GH (2004) Appl Phys Lett 84(18):3594. doi: https://doi.org/10.1063/1.1737481 CrossRefGoogle Scholar
  11. 11.
    Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746. doi: https://doi.org/10.1063/1.1458075 CrossRefGoogle Scholar
  12. 12.
    Cherechukin AA, Dikshtein IE, Ermakov DI, Glebov AV, Koledov VV, Kosolapov DA, Shavrov VG, Tulaikova AA, Krasnoperov EP, Takagi T (2001) Phys Lett A 291:175. doi: https://doi.org/10.1016/S0375-9601(01)00688-0 CrossRefGoogle Scholar
  13. 13.
    Wang WH, Chen JL, Liu ZH, Zhan WS (2002) Appl Phys Lett 80:634. doi: https://doi.org/10.1063/1.1447003 CrossRefGoogle Scholar
  14. 14.
    Wu GH, Yu CH, Meng LQ, Chen JL, Yang FM, Qi SR, Zhan WS, Wang Z, Zheng YF, Zhao LC (1999) Appl Phys Lett 75:2990. doi: https://doi.org/10.1063/1.125211 CrossRefGoogle Scholar
  15. 15.
    Zhu FQ, Yang FY, Chien CL, Ritchie L, Xiao G, Wu GH (2005) J Magn Magn Mater 288:79. doi: https://doi.org/10.1016/j.jmmm.2004.08.025 CrossRefGoogle Scholar
  16. 16.
    Hordequin C, Ristoiu D, Ranno L (2000) Eur Phys J B 16(2):287. doi: https://doi.org/10.1007/s100510070230 CrossRefGoogle Scholar
  17. 17.
    de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024. doi: https://doi.org/10.1103/PhysRevLett.50.2024 CrossRefGoogle Scholar
  18. 18.
    Otto MJ, van Woerden RAM, van der Valk PJ (1989) J Phys Condens Matter 1:2341. doi: https://doi.org/10.1088/0953-8984/1/13/007 CrossRefGoogle Scholar
  19. 19.
    Oestreich J, Probst U, Rrichardt F, Bucher E (2003) J Phys Condens Matter 15:635. doi: https://doi.org/10.1088/0953-8984/15/4/304 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peng Chen
    • 1
    Email author
  • Ke Chen
    • 2
  • Guang Heng Wu
    • 3
  • Xi Xiang Zhang
    • 4
  1. 1.Department of PhysicsSouthwest UniversityChongqingChina
  2. 2.Chongqing Electric Power CollegeChongqingChina
  3. 3.Beijing National Laboratory for Condensed Matter, Institute of PhysicsCASBeijingChina
  4. 4.Department of PhysicsHong Kong University of Science and TechnologyKowloonHong Kong, China

Personalised recommendations