Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4220–4225 | Cite as

Dielectric properties of Pb[(1−x)(Zr1/2Ti1/2)−x(Zn1/3Ta2/3)]O3 ceramics prepared by columbite and wolframite methods

  • Wanwimon Banlue
  • Naratip VittayakornEmail author
  • Chien-Chih Huang
  • David P. Cann
Article
  • 66 Downloads

Abstract

Polycrystalline samples of Pb[(1 − x)(Zr1/2Ti1/2) − x(Zn1/3Ta2/3)]O3, where x = 0.1–0.5 were prepared by the columbite and wolframite methods. The crystal structure, microstructure, and dielectric properties of the sintered ceramics were investigated as a function of composition via X-ray diffraction (XRD), scanning electron microscopy (SEM), and dielectric spectroscopy. The results indicated that the presence of Pb(Zn1/3Ta2/3)O3 (PZnTa) in the solid solution decreased the structural stability of overall perovskite phase. A transition from tetragonal to pseudo-cubic symmetry was observed as the PZnTa content increased and a co-existence of tetragonal and pseudo-cubic phases was observed at a composition close to x = 0.1. Examination of the dielectric spectra indicated that PZT–PZnTa exhibited an extremely high relative permittivity at the MPB composition. The permittivity showed a ferroelectric to paraelectric phase transition at 330 °C with a maximum value of 19,600 at 100 Hz at the MPB composition.

Keywords

Perovskite Perovskite Phase Morphotropic Phase Boundary Pyrochlore Phase Diffuse Phase Transition 

Notes

Acknowledgements

This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), the National Research Council of Thailand (NRCT), and the King Mongkut’s Institute of Technology Ladkrabang (KMITL).

References

  1. 1.
    Uchino K (2000) Ferroelectric devices. Marcel Dekker, Inc., New YorkGoogle Scholar
  2. 2.
    Bhalla AS, Guo R, Roy R (2000) Mat Res Innovat 4:3. doi: https://doi.org/10.1007/s100190000062 CrossRefGoogle Scholar
  3. 3.
    Jaffe B, Cook WR (1971) Piezoelectric ceramic. R.A.N. PublishersGoogle Scholar
  4. 4.
    George A Rossetti J, Zhang W, Khachaturyan AG (2006) Appl Phys Lett 88:072912. doi: https://doi.org/10.1063/1.2173721 CrossRefGoogle Scholar
  5. 5.
    Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
  6. 6.
    Xu Y (1991) Ferroelectric materials and their application. Elsevier Science Publishers B.VGoogle Scholar
  7. 7.
    Seung-Eek P, Shrout TR (1997) IEEE Trans Ultrason Ferroelectr Freq Control 44:1140CrossRefGoogle Scholar
  8. 8.
    Takenaka T, Muramata K, Fujii T (1992) Ferroelectrics 134:133. doi: https://doi.org/10.1080/00150199208015577 CrossRefGoogle Scholar
  9. 9.
    Vittayakorn N, Puchmark C, Rujijanagul G, Tan X, Cann DP (2006) Curr Appl Phys 6:303CrossRefGoogle Scholar
  10. 10.
    Bing Y-H, Ye Z-G (2006) J Cryst Growth 287:326. The 16th American Conference on Crystal Growth and Epitaxy – ACCGE 16Google Scholar
  11. 11.
    Cornejo IA, Jadidian B, Akdogan EK, Safari A (1998) Dielectric and Electromechanical properties of PNN–PT–PZ system: a processing-property study. In: Proc IEEE ISAF’98Google Scholar
  12. 12.
    Kuwata J, Uchino K, Nomura S (1982) Jpn J Appl Phys 21:1298CrossRefGoogle Scholar
  13. 13.
    Shrout TR, Halliyal A (1987) Am Ceram Soc Bull 66:704Google Scholar
  14. 14.
    Vittayakorn N, Wirunchit S (2007) Smart Mater Struct 16:851CrossRefGoogle Scholar
  15. 15.
    Vittayakorn N, Rujijanagul G, Tunkasiri T, Tan X, Cann DP (2003) J Mater Res 18:2882CrossRefGoogle Scholar
  16. 16.
    Vittayakorn N, Rujijanagul G, Tunkasiri T, Tan X, Cann DP (2004) Mater Sci Eng B 108:258CrossRefGoogle Scholar
  17. 17.
    Ahn B-Y, Kim N-K (2002) J Mater Sci 37:4697CrossRefGoogle Scholar
  18. 18.
    Kim J-S, Kim N-K (2003) J Am Ceram Soc 86:929CrossRefGoogle Scholar
  19. 19.
    Vittayakorn N, Rujijanagul G, Tan X, He H, Marquardt MA, Cann DP (2006) J Electroceram 16:141CrossRefGoogle Scholar
  20. 20.
    Vittayakorn N, Rujijanagul G, Tan X, Marquardt MA, Cann DP (2004) J Appl Phys 96:5103CrossRefGoogle Scholar
  21. 21.
    Vittayakorn N, Tunkasiri T (2007) Phys Scr T129:199CrossRefGoogle Scholar
  22. 22.
    Koval V, Alemany C, Brianin J, Bruncková H (2004) J Electroceram 10:19CrossRefGoogle Scholar
  23. 23.
    Yimnirun R, Ananta S, Laoratanakul P (2005) J Eur Ceram Soc 25:3235CrossRefGoogle Scholar
  24. 24.
    Randall CA, Bhalla AS, Shrout TR, Cross LE (1990) Ferroelectrics 11:103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wanwimon Banlue
    • 1
  • Naratip Vittayakorn
    • 1
    Email author
  • Chien-Chih Huang
    • 2
  • David P. Cann
    • 2
  1. 1.Materials Science Research Unit, Department of Chemistry, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Materials Science, School of Mechanical, Industrial, and Manufacturing EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations