Journal of Materials Science

, Volume 43, Issue 12, pp 4208–4214 | Cite as

Effect of sensitization heat treatment on properties of Al–Mg alloy AA5083-H116

  • I. N. A. OguochaEmail author
  • O. J. Adigun
  • S. YannacopoulosEmail author


Al–Mg alloy AA5083 is a sheet and plate alloy used mainly for marine application as well as for structural components in transportation and military applications. The strength is derived from solid solution strengthening and strain hardening. The properties of as-received and sensitized samples of AA5083-H116 were investigated using microhardness measurements, tensile testing, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Nitric Acid Mass Loss Test (NAMLT). The results show that both chemical and mechanical properties of the alloy decreased with increasing sensitization temperature and time. The deterioration in chemical property, which was measured in terms of the level of susceptibility to Intergranular Corrosion (IGC), is attributed to grain boundary precipitation of magnesium-rich particles. The loss in tensile and hardness properties is attributed to softening caused partly by decrease in Mg solute solid solution concentration with increasing sensitization time and temperature and partly by recrystallization at elevated temperatures.


Stress Corrosion Crack Sensitization Temperature Al3Mg2 Intermetallic Particle Slow Strain Rate Test 



The authors would like to thank the Natural Science and Engineering Research Council (NSERC) for Discovery Grants given to Prof. S. Yannacopoulos and Prof. I. N. A. Oguocha and Dr. A. K. Gupta of Alcan Aluminum Limited, Kingston, Ontario, Canada, for supply of test materials and scientific input. We also thank Prof. M. C. Chaturvedi at the University of Manitoba, Winnipeg, for making use of his SEM and EDS facilities.


  1. 1.
    Searles JL, Gouma PI, Buchheit RG (2001) Metall Mater Trans A 32:2859CrossRefGoogle Scholar
  2. 2.
    Jones RH (1992) In: Stress corrosion cracking. ASM International, Materials Park, OhioGoogle Scholar
  3. 3.
    Davenport AL, Yuan Y, Ambat R, Connolly BJ, Strangwood M, Afseth A, Scamans G (2006) Mater Sci Forum 519–521:641CrossRefGoogle Scholar
  4. 4.
    Chang JC, Chuang TH (1999) Metall Mater Trans 30A:3191CrossRefGoogle Scholar
  5. 5.
    Sampath D, Moldenhauer S, Schipper HR, Mechsner K, Haszler A (2000) Mater Sci Forum 331–337:1089CrossRefGoogle Scholar
  6. 6.
    Searles JL, Gouma PI, Buchheit RG (2002) Mater Sci Forum 396–402:1437CrossRefGoogle Scholar
  7. 7.
    Windisch CF Jr, Baer DR, Engelhard MH, Danielson MJ, Jones RH (2000) Presented at the 198th meeting of the Electrochem. Soc., Phoenix, AZGoogle Scholar
  8. 8.
    Baer DR, Windisch CF Jr, Engelhard MH, Danielson MJ, Jones RH, Vetrano JS (2000) J Vac Sci Technol A 18:131CrossRefGoogle Scholar
  9. 9.
    Jones RH, Baer DR, Danielson MJ, Vetrano JS (2001) Metall Mater Trans 32A:1699CrossRefGoogle Scholar
  10. 10.
    Vetrano JS, Williford RE, Jones RH (1997) In: Das SK (ed) Automotive alloys I. TMS Annual Meeting. Orlando, FL, TMS Warrendale, PA, p 77Google Scholar
  11. 11.
    Lea C, Molinari C (1984) J Mater Sci 19:2336CrossRefGoogle Scholar
  12. 12.
    Jones RH, Gertsman VY, Vetrano JS, Windissch CF Jr (2004) Scripta Mater 50:1355CrossRefGoogle Scholar
  13. 13.
    Esposto FJ, Zhang CS, Norton RR, Timsit RS (1994) Surf Sci 302:109CrossRefGoogle Scholar
  14. 14.
    Van Der Hoeven JA, Zhuang L, Schepers B, De Smet P, Baekelandt JP (2002) Aluminum 78:750Google Scholar
  15. 15.
    Miller WS, Zhuang L, Bottema J, Witterbrood AJ, De Smet P, Haszler A, Vieregge A (2000) Mater Sci Eng A280:37CrossRefGoogle Scholar
  16. 16.
    Hatch JE (1984) In: Aluminum: properties and physical metallurgy. American Society for Metals, Metals Park, Ohio, p 353Google Scholar
  17. 17.
    Davis JR (1999) In: Aluminum and aluminum alloys. ASM Specialty Handbook, Materials Park, OHGoogle Scholar
  18. 18.
    Chen J, Morris JG (2002) In: A study to reduce age softening of AA5182 aluminum alloy. Research Report for ARCO Aluminum Corp., p 23Google Scholar
  19. 19.
    Perryman WEC, Hadden SE (1950) J Inst Metals 77:207Google Scholar
  20. 20.
    Chang JC, Chuang TH (2002) J Mater Eng Perform 9:253CrossRefGoogle Scholar
  21. 21.
    Beck AF, Sperry PR (1969) In: Fundamental aspects of stress corrosion cracking. NACE, Houston, TX, p 513Google Scholar
  22. 22.
    Clausen AH, Borvik T, Hopperstad OS, Benallal A (2004) Mater Sci Eng A364:260CrossRefGoogle Scholar
  23. 23.
    Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss after Exposure to Nitric Acid (NAMLT Test), ASTM G 67 (2003)Google Scholar
  24. 24.
    Wen W, Zhao Y, Morris JG (2005) Mater Sci Eng A392:136CrossRefGoogle Scholar
  25. 25.
    Wen W, Morris JG (2003) Mater Sci Eng A354:279CrossRefGoogle Scholar
  26. 26.
    Harun HJ, Mccormick PG (1979) Acta Metall 27:155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.School of EngineeringThe University of British Columbia OkanaganKelownaCanada

Personalised recommendations