Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4182–4191 | Cite as

Poly(thiophenylanilino) and poly(furanylanilino) polymers

  • Lawrence C. Baldwin
  • Andrew P. Chafin
  • Jeffrey R. Deschamps
  • Samantha A. Hawkins
  • Michael E. Wright
  • David L. Witker
  • Nicholas ProkopukEmail author
Article

Abstract

Novel hybrid polymers with thiophenylanilino and furanylanilino backbones and substituted phenyl side groups are reported. The new monomers bis-(4-heterocyclic-2-yl-phenyl)-aryl-amine (heterocyclic = thiophen with aryl = 4-benzoyl (2a), 4-nitro-phenyl (2b) and furan with aryl = 4-benzoyl-phenyl (3a), 4-nitro-phenyl (3b)) were prepared by monosubstituting triphenylamine under electrophilic aromatic conditions affording 4-nitrotriphenylamine and 4-benzoyltriphenylamine. Di(bromination) of the latter compounds followed by Stille cross-coupling reactions with 2-tributylstannylthiophene or 2-tributylstannylfuran produces the new monomers 2a–b and 3a–b in high yield. The monomers are electrochemically polymerized at relatively low potentials (<0.8 V versus Ag+/AgCl) in acetonitrile electrolytes resulting in electroactive films. All the new polymers can be repeatedly oxidized and reduced with little loss of electrochemical activity. Vibrational spectroscopy reveals that the monomer units are connected predominately via coupling of the thiophenyl or furanyl rings yielding the novel polymers. Single-crystal molecular structure determinations of 4-nitrotriphenylamine and monomer 3b indicate the importance of the electron-withdrawing groups on the pendent phenyl groups in determining the extent of delocalization of the extended multi-ring systems. Molecular orbital calculations suggest that the HOMO of 2b is delocalized about both anilino and thiophenyl portions of the molecule.

Keywords

Polyaniline Thiophene Radical Cation Hybrid Polymer Triphenylamine 

Notes

Acknowledgement

NP thanks the Strategic Environmental Research and Development Program for support.

Supplementary material

10853_2008_2598_MOESM1_ESM.doc (26 kb)
ESM (DOC 26 kb)

References

  1. 1.
    Chollet P-A (1987) Rev Phys Appl 22:1221CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Choi KS, Kwak JG, Lee CH, Kim H, Char KH, Kim DY, Zentel R (2008) Poly Bull 59:795. doi: https://doi.org/10.1007/s00289-007-0815-4 CrossRefGoogle Scholar
  4. 4.
    Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99. doi: https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 CrossRefGoogle Scholar
  5. 5.
    Sim JH, Yamada K, Lee SH, Nokokura S, Sato H (2007) Syn Met 157:940. doi: https://doi.org/10.1016/j.synthmet.2007.09.009 CrossRefGoogle Scholar
  6. 6.
    Chahma M, Gilroy JB, Hicks RG (2007) J Mater Chem 17:4768. doi: https://doi.org/10.1039/b711693d CrossRefGoogle Scholar
  7. 7.
    MacDiarmid AG, Mu SL, Somasiri MLD, Wu W (1985) Mol Cryst Liq Cryst 121:187. doi: https://doi.org/10.1080/00268948508074859 CrossRefGoogle Scholar
  8. 8.
    Kitani A, Kaya M, Sasaki K (1986) J Electrochem Soc 133:1069. doi: https://doi.org/10.1149/1.2108787 CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Kalaji M, Murphy PJ, Williams GO (1999) Syn Met 102:1360. doi: https://doi.org/10.1016/S0379-6779(98)01334-4 CrossRefGoogle Scholar
  11. 11.
    Arbizzani C, Mastragostino M, Soavi F (2001) J Power Sources 100:164. doi: https://doi.org/10.1016/S0378-7753(01)00892-8 CrossRefGoogle Scholar
  12. 12.
    Fusalba F, Ho HA, Breau L, Bélanger D (2000) Chem Mater 12:2581. doi: https://doi.org/10.1021/cm000011r CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Wang H, Ryu JT, Kim DU, Han YS, Park LS, Cho HY, Lee SJ, Kwon Y (2007) Mol Cryst Liq Cryst 471: 279. doi: https://doi.org/10.1080/15421400701548506 CrossRefGoogle Scholar
  15. 15.
    Sicot L, Geffroy B, Lorin A, Raimond P, Sentein C, Nunzi J-M (2001) J Appl Phys 90:1047. doi: https://doi.org/10.1063/1.1378064 CrossRefGoogle Scholar
  16. 16.
    Yoshino K, Tada K, Fujii A, Conwell EM, Zakhidov AA (1997) IEEE Trans Electron Dev 44:1315. doi: https://doi.org/10.1109/16.605474 CrossRefGoogle Scholar
  17. 17.
    Shirota Y (2000) J Mater Chem 10:1. doi: https://doi.org/10.1039/a908130e CrossRefGoogle Scholar
  18. 18.
    Ishikawa M, Kawai M, Ohsawa Y (1991) Syn Met 40:231. doi: https://doi.org/10.1016/0379-6779(91)91778-9 CrossRefGoogle Scholar
  19. 19.
    McKeown NB, Badriya S, Helliwell M, Shkunov M (2007) J Mater Chem 17:2088. doi: https://doi.org/10.1039/b614235d CrossRefGoogle Scholar
  20. 20.
    Strzelec K, Fugino N, Ha J, Ogino K, Sato H (2002) Macromol Chem Phys 203:2488. doi: https://doi.org/10.1002/macp.200290031 CrossRefGoogle Scholar
  21. 21.
    Bellmann E, Shaheen SE, Thayumanavan S, Barlow S, Grubbs RH, Marder SR, Kippelen B, Peyghambarian N (1998) Chem Mater 10:1668. doi: https://doi.org/10.1021/cm980030p CrossRefGoogle Scholar
  22. 22.
    Feigenbaum WM, Michel RH (1971) J Poly Sci Part A-1: Poly Chem 9:817. doi: https://doi.org/10.1002/pol.1971.150090322 CrossRefGoogle Scholar
  23. 23.
    Eberson L, Hartshorn MP, Svensson JO (1997) Acta Chem Scand 51:279CrossRefGoogle Scholar
  24. 24.
    Gaussian 03, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CTGoogle Scholar
  25. 25.
    Wright ME, Jin M-J (1989) J Org Chem 54:965. doi: https://doi.org/10.1021/jo00265a043 CrossRefGoogle Scholar
  26. 26.
    Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359. doi: https://doi.org/10.1021/cr000664r CrossRefGoogle Scholar
  27. 27.
    Stille JK (1986) Angew Chem Int Ed Engl 25:508. doi: https://doi.org/10.1002/anie.198605081 CrossRefGoogle Scholar
  28. 28.
    Hoshino M, Degenkolb P, Curran DP (1997) J Org Chem 62: 8341. doi: https://doi.org/10.1021/jo9709413 CrossRefGoogle Scholar
  29. 29.
    Brody MS, Finn MG (1999) Tetrahedron 40:415. doi: https://doi.org/10.1016/S0040-4039(98)02384-3 CrossRefGoogle Scholar
  30. 30.
    Sobolev AN, Belsky VK, Romm IP, Chernikova NY (1985) Acta Crysta Sect C 41:967. doi: https://doi.org/10.1107/S0108270185006217 CrossRefGoogle Scholar
  31. 31.
    Kongrev DV, Kovalevsky AY, Litvinov AL, Drichko NV, Tarasov BP, Coppens P, Lyubovskaya RN (2002) J Solid State Chem 168:474. doi: https://doi.org/10.1006/jssc.2002.9732 CrossRefGoogle Scholar
  32. 32.
    Manifor T, Rohani S, Jennings MS (2004) Acta Cryst Sect E 60:o2301. doi: https://doi.org/10.1107/S1600536804028247 CrossRefGoogle Scholar
  33. 33.
    Stechan E (1987) Top Curr Chem 147:1Google Scholar
  34. 34.
    Eberson L, Larsson B (1986) Acta Chem Scand Ser B 40:210CrossRefGoogle Scholar
  35. 35.
    Demirboğa B, ÖNal AM (1999) Syn Met 99:237. doi: https://doi.org/10.1016/S0379-6779(98)01509-4 CrossRefGoogle Scholar
  36. 36.
    Wan X, Yan F, Jin S, Liu X, Xue G (1999) Chem Mater 11:2400. doi: https://doi.org/10.1021/cm9900453 CrossRefGoogle Scholar
  37. 37.
    Gök A, Sari B, Talu M (2005) J Appl Poly Sci 98: 2440. doi: https://doi.org/10.1002/app.22439 CrossRefGoogle Scholar
  38. 38.
    Wan X-B, Li LHJ-B, Zhou D-S, Xue G, Wang T-W (2002) J Appl Poly Sci 86:3160. doi: https://doi.org/10.1002/app.11343 CrossRefGoogle Scholar
  39. 39.
    Zotti G, Schiavon G, Zecchin S (1995) Syn Met 72:275. doi: https://doi.org/10.1016/0379-6779(95)03280-0 CrossRefGoogle Scholar
  40. 40.
    Son JM, Sakaki Y, Ogino K, Sato H (1997) IEEE Trans Electron Dev 44:1307. doi: https://doi.org/10.1109/16.605473 CrossRefGoogle Scholar
  41. 41.
    Goodson FE, Hauck SI, Hartwig JF (1999) J Am Chem Soc 121:7527. doi: https://doi.org/10.1021/ja990632p CrossRefGoogle Scholar
  42. 42.
    Laforgue A, Simon P, Fauvarque J-F (2001) Syn Met 123:311. doi: https://doi.org/10.1016/S0379-6779(01)00296-X CrossRefGoogle Scholar
  43. 43.
    Fu Y, Lie L, Yu H-Z, Wang Y-M, Guo Q-X (2005) J Am Chem Soc 127:7227. doi: https://doi.org/10.1021/ja0421856 CrossRefGoogle Scholar
  44. 44.
    Miyata Y, Nishinaga T, Komatsu K (2005) J Org Chem 70: 1147. doi: https://doi.org/10.1021/jo048282z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lawrence C. Baldwin
    • 1
  • Andrew P. Chafin
    • 1
  • Jeffrey R. Deschamps
    • 2
  • Samantha A. Hawkins
    • 1
  • Michael E. Wright
    • 1
  • David L. Witker
    • 1
  • Nicholas Prokopuk
    • 1
    Email author
  1. 1.Research & Science Engineering Department, Research Division, Chemistry BranchNAVAIRChina LakeUSA
  2. 2.Naval Research LaboratoryWashingtonUSA

Personalised recommendations