Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3223–3233 | Cite as

Comparison of failure mechanisms between rubber-modified and unmodified epoxy adhesives under mode II loading condition

  • Makoto ImanakaEmail author
  • Ryousuke Orita
  • Yosinobu Nakamura
  • Masaki Kimoto
Article

Abstract

The effect of rubber modification on fracture toughness of adhesive joints under mode II loading condition was investigated in comparison with that under mode I loading, wherein the two adhesives rubber-modified and unmodified were used. To evaluate the fracture toughness on the basis of R-curve characteristics under mode II loading condition, four-point bend tests had been conducted for the adhesively bonded end-notched flexure (ENF) specimens. Thus obtained R-curves revealed the following trend: its behavior did not appear for the unmodified adhesive, whereas the rubber-modified adhesive exhibited a typical behavior. In the initial stage of crack propagation, GIIC of the rubber-modified adhesive is lower than that of the unmodified adhesive, but becomes greater in the range of Δa > 25 mm. Nevertheless, the significant improvement of the fracture toughness with the rubber modification under mode I loading condition was not observed under mode II loading. Moreover, FEM analysis was made to elucidate the relation between the above fracture behavior and stress distributions near the crack tip. The results gave the reasonable relationship between evolution of plastic zone and the area with high void-fraction as well as the R-curves behavior. In addition, macroscopic and SEM observations for the fracture surfaces were also conducted.

Keywords

Fracture Toughness Plastic Zone Energy Release Rate Maximum Principal Stress Adhesive Joint 

Notes

Acknowledgements

The Authors would like to acknowledge Japan Synthesis Rubber Co. for Providing XER-91.

References

  1. 1.
    Bascom WD, Cottington RL, Jones RL, Peyser P (1975) J Appl Polym Sci 19:2524CrossRefGoogle Scholar
  2. 2.
    Bascom WD, Cottington RL (1976) J Adhes 7:333CrossRefGoogle Scholar
  3. 3.
    Rakestraw MD, Taylor NW, Dillard AD, Chang T (1995) J Adhes 55:123CrossRefGoogle Scholar
  4. 4.
    Daghyani HR, Ye L, Mai Y-W (1995) J Adhes 53:149CrossRefGoogle Scholar
  5. 5.
    Daghyani HR, Ye L, Mai Y-W (1996) J Mater Sci 31:2523. doi: https://doi.org/10.1007/BF00687277 CrossRefGoogle Scholar
  6. 6.
    Ashcroft IA, Hughes DJ, Shaw SJ (2001) Int J Adhes Adhes 21:87CrossRefGoogle Scholar
  7. 7.
    Yee AF, Person RA (1988) In: Roulin-Moloney AC (ed) Fracto-graphy and failure mechanism of polymers and composites. Elesvier Applied Science Publisher, London & New York, p 219Google Scholar
  8. 8.
    Chai H (1992) Int J Frac 58:223CrossRefGoogle Scholar
  9. 9.
    Chai H (1998) Int J Frac 37:137Google Scholar
  10. 10.
    Daghyani HR, Ye L, Mai Y-W (1996) J Adhes 56:71Google Scholar
  11. 11.
    Blackman BRK, Kinloch AJ, Paraschi M (2005) Eng Frac Mech 72:877CrossRefGoogle Scholar
  12. 12.
    Chai H, Martin YMC (1996) J Mech Phys Solids 44:1669CrossRefGoogle Scholar
  13. 13.
    Kim HS, Ma P (1998) Key Eng Mater 137:179CrossRefGoogle Scholar
  14. 14.
    Kim HS, Ma P (1998) J Appl Polym Sci 69:405CrossRefGoogle Scholar
  15. 15.
    Ookubo K, Yoshimitu H, Fujii Y (2001) Trans JSME Ser A 67:106 (in Japanese)CrossRefGoogle Scholar
  16. 16.
    de Morais AB, de Moura MFSF (2006) Eng Frac Mech 73:2264CrossRefGoogle Scholar
  17. 17.
    Martin RH, Davidson BD (1999) Plast Rubber Comp 28:401CrossRefGoogle Scholar
  18. 18.
    Schuecker C, Davidson BD (2000) ASTM STP 1383:334Google Scholar
  19. 19.
    Sun X, Davidson BD (2005) Int J Frac 135:51CrossRefGoogle Scholar
  20. 20.
    Du J, Thouless MD, Yee AF (2000) Acta Mater 48:3581CrossRefGoogle Scholar
  21. 21.
    Person RA, Yee AF (1989) J Mater Sci 24:2571. doi: https://doi.org/10.1007/BF01174528 CrossRefGoogle Scholar
  22. 22.
    Guild FJ, Kinloch AJ (1995) J Mater Sci 30:1689. doi: https://doi.org/10.1007/BF00351597 CrossRefGoogle Scholar
  23. 23.
    Chen XH, Mai Y-W (1998) J Mater Sci 33:3529. doi: https://doi.org/10.1023/A:1004686708639 CrossRefGoogle Scholar
  24. 24.
    Chen XH, Mai Y-W (1999) J Mater Sci 34:2139. doi: https://doi.org/10.1023/A:1004576213379 CrossRefGoogle Scholar
  25. 25.
    Gurson AL (1977) J Eng Mater Tech 99:2CrossRefGoogle Scholar
  26. 26.
    Tvergaard V (1982) J Mech Phys Solids 30:399CrossRefGoogle Scholar
  27. 27.
    Kody RS, Lesser AJ (1999) Polym Comp 20:250CrossRefGoogle Scholar
  28. 28.
    Ikeda T, Mano J, Ikemoto D, Lee DB, Miyazaki N (2003) Trans Japan Soc Mech Eng 69:434 (in Japanese)CrossRefGoogle Scholar
  29. 29.
    Imanaka M, Nakamura Y, Nishimura A, Iida T (2003) Comp Sci Tech 63:41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Makoto Imanaka
    • 1
    Email author
  • Ryousuke Orita
    • 1
  • Yosinobu Nakamura
    • 2
  • Masaki Kimoto
    • 3
  1. 1.Department of Technology EducationOsaka University of EducationKashiwara, OsakaJapan
  2. 2.Department of Applied ChemistryOsaka Institute of TechnologyOsakaJapan
  3. 3.Department of Chemistry and EnvironmentTechnical Research Institute of Osaka PrefectureOsakaJapan

Personalised recommendations