Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4363–4369 | Cite as

Polyacrylonitrile/vapor grown carbon nanofiber composite films

  • Huina Guo
  • Asif Rasheed
  • Marilyn L. Minus
  • Satish Kumar
Commonality of Phenomena in Composite Materials

Abstract

Polyacrylonitrile (PAN)/vapor grown carbon nanofiber (VGCNF) composite films were processed from N, N-dimethylformamide (DMF) at various nanofiber loadings: 5, 10, 20, 40, 60, 80, and 90 wt%. Tensile, dynamic mechanical, electrical, structural, and morphological properties of these composite films were studied. Enhancement in tensile properties was observed in composites with nanofiber loading up to 40 wt%. The storage modulus of PAN increased upon incorporation of nanofiber particularly above the glass transition temperature. The tan δ peak broadens and shifts to higher temperatures with the addition of VGCNF. The activation energy for PAN molecular motion was higher than that in the control PAN film. The electrical conductivity of composite films increased with increasing nanofiber loading and exhibited a percolation at 3.1 vol%. Scanning electron microscopy (SEM) indicated PAN coated nanofibers in the composite film.

Keywords

Composite Film Storage Modulus Void Content Hollow Nanofibers Phenylene Sulfide 

Notes

Acknowledgements

This work was supported by AFOSR (FA9550-06-1-0122 and FA9550-07-1-0233).

References

  1. 1.
    Lake ML, Ting JM (1999) In: Burchell TD (Ed) Carbon materials for advanced technologies. Oxford, UK, pp 139–167Google Scholar
  2. 2.
    De Jong KP, Geus JW (2000) Catal Rev-Sci Eng 42:481CrossRefGoogle Scholar
  3. 3.
    Tibbetts GG, Devour MG (1986) U.S. Patent 4,565,684Google Scholar
  4. 4.
    Tibbetts GG (1989) Carbon 27:745CrossRefGoogle Scholar
  5. 5.
    Uchida T, Anderson DP, Minus ML, Kumar S (2006) J Mater Sci 41:5851. doi: https://doi.org/10.1007/s10853-006-0324-0 CrossRefGoogle Scholar
  6. 6.
    Choi YK, Gotoh Y, Sugimoto KI, Song SM, Yanagisawa T, Endo M (2005) Polymer 46:11489CrossRefGoogle Scholar
  7. 7.
    Patton RD, Pittman CU, Wang L, Hill JR (1999) Compos A-Appl Sci Manuf 30:1081CrossRefGoogle Scholar
  8. 8.
    Prasse T, Cavaille JY, Bauhofer W (2003) Compos Sci Technol 63:1835CrossRefGoogle Scholar
  9. 9.
    Lozano K, Yang SY, Zeng Q (2004) J Appl Polym Sci 93:155CrossRefGoogle Scholar
  10. 10.
    Hine P, Broome V, Ward I (2005) Polymer 46:10936CrossRefGoogle Scholar
  11. 11.
    Lozano K, Bonilla-Rios J, Barrera EV (2001) J Appl Polym Sci 80:1162CrossRefGoogle Scholar
  12. 12.
    Lozano K, Bonilla-Rios J, Barrera EV (2001) J Appl Polym Sci 80:125CrossRefGoogle Scholar
  13. 13.
    Carneiro OS, Maia JM (2000) Polym Compos 21:960CrossRefGoogle Scholar
  14. 14.
    Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon 42:1153CrossRefGoogle Scholar
  15. 15.
    Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Polymer 43:1701CrossRefGoogle Scholar
  16. 16.
    Caldeira G, Maia JM, Carneiro OS, Covas JA, Bernardo CA (1998) Polym Compos 19:147CrossRefGoogle Scholar
  17. 17.
    Carneiro OS, Maia JM (2000) Polym Compos 21:970CrossRefGoogle Scholar
  18. 18.
    Carneiro OS, Covas JA, Bernardo CA, Caldeira G, Van Hattum FWJ, Ting JM, Alig RL, Lake ML (1998) Compos Sci Technol 58:401CrossRefGoogle Scholar
  19. 19.
    Choi YK, Sugimoto KI, Song SM, Endo M (2005) Mater Lett 59:3514CrossRefGoogle Scholar
  20. 20.
    Higgins BA, Brittain WJ (2005) Eur Polym J 41:889CrossRefGoogle Scholar
  21. 21.
    Enomoto K, Yasuhara T, Kitakata S, Murakami H, Ohtake N (2004) New Diamond Frontier Carbon Technol 14:11Google Scholar
  22. 22.
    Shofner ML, Lozano K, Rodriguez-Macias FJ, Barrera EV (2003) J Appl Polym Sci 89:3081CrossRefGoogle Scholar
  23. 23.
    Tibbetts GG, McHugh JJ (1999) J Mater Res 14:2871CrossRefGoogle Scholar
  24. 24.
    Pogue RT, Ye J, Klosterman DA, Glass AS, Chartoff RP (1998) Compos A-Appl Sci Manuf 29:1273CrossRefGoogle Scholar
  25. 25.
    Ogasawara T, Ishida Y, Ishikawa T (2004) Adv Compos Mater 13:215CrossRefGoogle Scholar
  26. 26.
    Zeng JJ, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S (2004) Compos B-Eng 35:173CrossRefGoogle Scholar
  27. 27.
    Ma HM, Zeng JJ, Realff ML, Kumar S, Schiraldi DA (2003) Compos Sci Technol 63:1617CrossRefGoogle Scholar
  28. 28.
    Uchida T, Dang T, Min BG, Zhang XF, Kumar S (2005) Compos B-Eng 36:183CrossRefGoogle Scholar
  29. 29.
    Chae HG, Sreekumar TV, Uchida T, Kumar S (2005) Polymer 46:10925CrossRefGoogle Scholar
  30. 30.
    Oakey J, Marr DWM, Schwartz KB, Wartenberg M (1999) Macromolecules 32:5399CrossRefGoogle Scholar
  31. 31.
    Shi DL, Lian J, He P, Wang LM, Xiao F, Yang L, Schulz MJ, Mast DB (2003) Appl Phys Lett 83:5301CrossRefGoogle Scholar
  32. 32.
    Mouritz AP (2000) J Compos Mater 34:218CrossRefGoogle Scholar
  33. 33.
    Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344CrossRefGoogle Scholar
  34. 34.
    Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE (2004) Adv Mater 16:58CrossRefGoogle Scholar
  35. 35.
    Kumar S, Anderson DP, Crasto AS (1993) J Mater Sci 28:423. doi: https://doi.org/10.1007/BF00357820 CrossRefGoogle Scholar
  36. 36.
    Gupta AK, Singhal RP (1983) J Polym Sci B-Polym Phys 21:2243CrossRefGoogle Scholar
  37. 37.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, MA, p 102Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Huina Guo
    • 1
  • Asif Rasheed
    • 1
    • 2
  • Marilyn L. Minus
    • 1
  • Satish Kumar
    • 1
  1. 1.School of Polymer, Textile and Fiber EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of ChemistryUniversity of WisconsinWhitewaterUSA

Personalised recommendations