Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3218–3222 | Cite as

Effect of blend composition on the rheology property of polypropylene/poly (ethylene-1-octene) blends

  • Na Song
  • Lin Zhu
  • Xueliang Yan
  • Yanbo Xu
  • Xinhua XuEmail author
Article

Abstract

In the present study, the dynamic viscoelastic properties for binary blends consisting of polypropylene (PP) and poly (ethylene-1-octene) (POE) were investigated using a Stresstech Rheometer in molten states at 210 °C. The results show that the blends with different content of POE present diversified rheological behaviors. Meanwhile, the blends with 10 wt% and 20 wt% POE show especial rheological behaviors. The dynamic complex viscosity of the blends with 10 wt% and 20 wt% POE are higher than that of others. The storage modulus and loss modulus of the blends with 10–40 wt% POE are different from other blends, and the blends with 10 wt% POE present the largest relaxation time. This behavior is probably related to the miscibility and long chain branch of POE in the PP/POE blends.

Keywords

Storage Modulus Rheological Behavior Loss Modulus Complex Viscosity Ethylene Propylene Diene Monomer 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (No. 02490220).

References

  1. 1.
    Yamaguchi M, Nitta KH, Miyata H et al (1997) J Appl Polym Sci 63:467CrossRefGoogle Scholar
  2. 2.
    D’Orazio L, Cecchin G (2001) Polymer 42:2675CrossRefGoogle Scholar
  3. 3.
    D’Orazio L, Mancarella C, Martuscelli E (1999) Polymer 40:2745CrossRefGoogle Scholar
  4. 4.
    Huang L, Pei QW, Yuan Q et al (2003) Polymer 44:3125CrossRefGoogle Scholar
  5. 5.
    Jiang W, Tjong SC, Li RKY (2000) Polymer 41:3479CrossRefGoogle Scholar
  6. 6.
    Mighri F, Huneault MA, Ajji A, Ko GH et al (2001) J Appl Polym Sci 82:2113CrossRefGoogle Scholar
  7. 7.
    Paul S, Kale DD (2002) J Appl Polym Sci 84:665CrossRefGoogle Scholar
  8. 8.
    Paul S, Kale DD (2000) J Appl Polym Sci 76:1480CrossRefGoogle Scholar
  9. 9.
    Yang, J, Zhang Y, Zhang Y (2003) Polymer 44:5047CrossRefGoogle Scholar
  10. 10.
    McNally T, McShane P, Nally GM et al (2002) Polymer 43:3785CrossRefGoogle Scholar
  11. 11.
    Kontopoulou, M, Wang, W, Gopakumar TG et al (2003) Polymer 44:7495CrossRefGoogle Scholar
  12. 12.
    Carriere CJ, Silvis HC (1997) J Appl Polym Sci 66:1175CrossRefGoogle Scholar
  13. 13.
    Da Silva ALN, Tavares MIB, Politano DP et al (1997) J Appl Polym Sci 66:2005CrossRefGoogle Scholar
  14. 14.
    Da Silva ALN, Rocha MCG, Coutinho FMB et al (2000) J Appl Polym Sci 75:692CrossRefGoogle Scholar
  15. 15.
    Da Silva ALN, Rocha MCG, Coutinho FMB (2002) Polym Test 21:289CrossRefGoogle Scholar
  16. 16.
    Graessley WW (1965) J Chem Phys 43:2696CrossRefGoogle Scholar
  17. 17.
    Graessley WW (1967) J Chem Phys 47:1942CrossRefGoogle Scholar
  18. 18.
    Uy WC, Graessley WW (1971) Macromolecules 4:458CrossRefGoogle Scholar
  19. 19.
    Graessley WW, Prentice JS (1968) J Ploym Sci A 26:1887Google Scholar
  20. 20.
    Han CD (1976) Rheology in polymer processing. Academic Press, LondonGoogle Scholar
  21. 21.
    Krulis Z, Fortelny I (1993) Collect Czech Chem C 58:2642CrossRefGoogle Scholar
  22. 22.
    Souza AMC, Demarquette NR (2002) Polymer 43:1313CrossRefGoogle Scholar
  23. 23.
    Rojo E, Munoz ME, Santamaria A et al (2004) Macromol Rapid Comm 25:1314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Na Song
    • 1
  • Lin Zhu
    • 1
  • Xueliang Yan
    • 1
  • Yanbo Xu
    • 1
  • Xinhua Xu
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations