Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4433–4442 | Cite as

Polymer-bioceramic composites for tissue engineering scaffolds

  • Darmawati Mohamad Yunos
  • Oana Bretcanu
  • Aldo R. Boccaccini
Commonality of Phenomena in Composite Materials

Abstract

Designing tissue engineering scaffolds with the required mechanical properties and favourable microstructure to promote cell attachment, growth and new tissue formation is one of the key challenges facing the tissue engineering field. An important class of scaffolds for bone tissue engineering is based on bioceramics and bioactive glasses, including: hydroxyapatite, bioactive glass (e.g. Bioglass®), alumina, TiO2 and calcium phosphates. The primary disadvantage of these materials is their low resistance to fracture under loads and their high brittleness. These drawbacks are exacerbated by the fact that optimal scaffolds must be highly porous (>90% porosity). Several approaches are being explored to enhance the structural integrity, fracture strength and toughness of bioceramic scaffolds. This paper reviews recent proposed approaches based on developing bioactive composites by introducing polymer coatings or by forming interpenetrating polymer-bioceramic microstructures which mimic the composite structure of bone. Several systems are analysed and scaffold fabrication processes, microstructure development and mechanical properties are discussed. The analysis of the literature suggests that the scaffolds reviewed here might represent the optimal solution and be the scaffolds of choice for bone regeneration strategies.

Keywords

Foam Compressive Strength Simulated Body Fluid Bioactive Glass Bone Tissue Engineering 

Notes

Acknowledgements

OB acknowledges the European Commission for funding via a Marie Curie Fellowship. DMY acknowledges the financial support of the Malaysian Government for a PhD Studentship at Imperial College London, UK. We thank X. Miao (Queensland University of Technology, Australia) and J. Chevalier (INSA Lyon, France) for providing some of the micrographs presented in this paper.

References

  1. 1.
    Vacanti JP, Vacanti CA (2000) In: Lanza RP, Langer R, Vancanti JP (eds) Principle of tissue engineering, 2nd edn. Acedemic Press, California, p 3CrossRefGoogle Scholar
  2. 2.
    Ikada Y (2006) J R Soc Interface 3:589CrossRefGoogle Scholar
  3. 3.
    Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) J Tissue Eng Regen Med 1:245CrossRefGoogle Scholar
  4. 4.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413CrossRefGoogle Scholar
  5. 5.
    Guarino V, Causa F, Ambrosio L (2007) Expert Rev Medical Devices 4(3):405CrossRefGoogle Scholar
  6. 6.
    Agrawal CM, Ray RB (2001) J Biomed Mater Res 55(2):141CrossRefGoogle Scholar
  7. 7.
    Yang S, Leong K, Du Z, Chua C (2001) Tissue Eng 7(6):679CrossRefGoogle Scholar
  8. 8.
    Jones JR, Boccaccini AR (2005) In: Colombo P, Scheffler M (eds) Cellular ceramics, structure, manufacturing, properties and applications, chap 5.8. Wiley-VCH, Weinheim, pp 547–570. ISBN: 3-527-31320-6Google Scholar
  9. 9.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Mater Res 2:117CrossRefGoogle Scholar
  10. 10.
    Chen QZ, Thompson ID, Boccaccini AR (2006) Biomaterials 27:2414CrossRefGoogle Scholar
  11. 11.
    Vitale-Brovarone C, Verne E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R (2007) Acta Biomater 3:199CrossRefGoogle Scholar
  12. 12.
    Fu Q, Rahaman MN, Bal BS, Huang W, Day DE (2007) J Biomed Mater Res A 82:222CrossRefGoogle Scholar
  13. 13.
    Livingston T, Ducheyne P, Garino J (2002) J Biomed Mater Res 62:1CrossRefGoogle Scholar
  14. 14.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) J Biomed Mater Res 55:151CrossRefGoogle Scholar
  15. 15.
    Wang X, Bank RA, Tekoppele JM, Agrawal CM (2001) J Orthop Res 19:1021CrossRefGoogle Scholar
  16. 16.
    Schwarzwalder K, Somers AV (1963) Methods of making porous ceramic articles, US Pat 3090094, 1963Google Scholar
  17. 17.
    Sieber H, Kaindl A, Schwarze D, Werner JP, Greil P (2000) CFI Ceram Forum Int 77:21Google Scholar
  18. 18.
    Zhu XW, Jiang DL, Tan SH, Zhang ZQ (2001) J Am Ceram Soc 84:1654CrossRefGoogle Scholar
  19. 19.
    Montanaro L, Jorand Y, Fantozzi G, Negro A (1998) J Eur Ceram Soc 18:1339CrossRefGoogle Scholar
  20. 20.
    Saggio-Woyansky J, Scott CE, Minnear WP (1992) Am Ceram Soc Bull 71:1674Google Scholar
  21. 21.
    Lutyen J, Thijis I, Vandermeulen W, Mullens S, Wallaeys B, Mortelmans R (2005) Adv Appl Ceram 104(1):4CrossRefGoogle Scholar
  22. 22.
    Richardson JT, Peng Y, Remue D (2000) Appl Cat A Gen 204:19CrossRefGoogle Scholar
  23. 23.
    Lange FF, Miller KT (1987) Adv Ceram Mater 2:827CrossRefGoogle Scholar
  24. 24.
    Haugen H, Will J, Koehler A, Hopfner U, Aigner J, Wintermantel E (2004). J Eur Ceram Soc 24:661CrossRefGoogle Scholar
  25. 25.
    Novak S, Druce J, Chen QZ, Boccaccini AR (2008) J Mater Sci (submitted)Google Scholar
  26. 26.
    Chen QZ, Zhang HB, Wang DZ, Edirisinghe MJ, Boccaccini AR (2006) J Am Ceram Soc 89:1534CrossRefGoogle Scholar
  27. 27.
    Kim HW, Kim HE, Knowles JC (2004) J Biomed Mater Res 70B:270CrossRefGoogle Scholar
  28. 28.
    Boccaccini AR, Chen QZ, Lefebvre L, Gremillard L, Chevalier J (2007) Faraday Discuss 136:27CrossRefGoogle Scholar
  29. 29.
    Ben-Nissan B (2003) Curr Opin Solid State Mater Sci 7:283CrossRefGoogle Scholar
  30. 30.
    Roy DM, Linnehan SK (1974) Nature 247:220CrossRefGoogle Scholar
  31. 31.
    Ebaretonbofa E, Evans JRG (2002) J Porous Mater 9:257CrossRefGoogle Scholar
  32. 32.
    Ramay HR, Zhang M (2003) Biomaterials 24:3293CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Zhang M (2002) J Biomed Mater Res 61:1CrossRefGoogle Scholar
  34. 34.
    Miao X, Hu Y, Liu J, Wong AP (2004) Mater Lett 58:397CrossRefGoogle Scholar
  35. 35.
    Lee Y-K, Park YS, Kim MC, Kim KM, Kim KN, Choi SH, Kim CK, Jung HS, You CK, Legeros RZ (2004) Key Eng Mater 254–256:1079Google Scholar
  36. 36.
    Queiroz AC, Teixeira S, Santos JD, Monteiro FJ (2004) Key Eng Mater 254–256:997Google Scholar
  37. 37.
    Sepulveda P, Bressiani AH, Bressiani JC, Meseguer L, Koenig B Jr (2002) J Biomed Mater Res 62:587CrossRefGoogle Scholar
  38. 38.
    Sepulveda P (1997) Am Ceram Soc Bull 76(10):61Google Scholar
  39. 39.
    Bouler JM, Trecant M, Delecrin J, Royer J, Passuti N, Daculsi G (1996) J Biomed Mater Res 32:603CrossRefGoogle Scholar
  40. 40.
    Koc N, Timucin M, Korkusuz F (2004) Ceram Int 30:205CrossRefGoogle Scholar
  41. 41.
    Suchanek W, Yoshimura M (1998) J Mater Res 13:94CrossRefGoogle Scholar
  42. 42.
    Navarro M, Del Valle S, Ginebra MP, Martinez S, Planell JA (2004) Key Eng Mater 254–256:945Google Scholar
  43. 43.
    Liu DM (1997) J Mater Sci Mater Med 8:227CrossRefGoogle Scholar
  44. 44.
    Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) J Biochem (Tokyo) 121:317CrossRefGoogle Scholar
  45. 45.
    Albuquerque JSV, Nogueira REFQ, Pinheiro da Silva TD, Lima DO, Prado da Silva MH (2004) Key Eng Mater 254–256:1021Google Scholar
  46. 46.
    Sepulveda P, Jones JR, Hench LL (2002) J Biomed Mater Res 59:340CrossRefGoogle Scholar
  47. 47.
    Lemos AF, Ferreira JMF (2004) Key Eng Mater 254–256:1041Google Scholar
  48. 48.
    Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP (2004) Biomaterials 25:3671CrossRefGoogle Scholar
  49. 49.
    Sepulveda P, Binner JGP, Rogero SO, Higa OZ, Bressiani JC (2000) J Biomed Mater Res 50:27CrossRefGoogle Scholar
  50. 50.
    Rainer A, Giannitelli SM, Abbuzzese F, Traversa E, Licoccia S, Trombetta M (2008) Acta Biomater 4:362CrossRefGoogle Scholar
  51. 51.
    Komlev VC, Barinov SM, Rustichelli F (2003) J Mater Sci Lett 22:1215CrossRefGoogle Scholar
  52. 52.
    Nalla RK, Kinney JH, Ritchie RO (2003 Nat Mater 2:164CrossRefGoogle Scholar
  53. 53.
    Nalla RK, Kinney JH, Ritchie RO (2003) Biomaterials 24:3955CrossRefGoogle Scholar
  54. 54.
    Pezzotti G, Asmus SMF, Ferroni LP, Miki S (2002) J Mater Sci Mater Med 13:783CrossRefGoogle Scholar
  55. 55.
    Mansur GS, Costa HS (2008) Chem Eng J 137:72CrossRefGoogle Scholar
  56. 56.
    Montserrat C, Antonio JS, Maria V-R (2006) Chem Mater 18:5676CrossRefGoogle Scholar
  57. 57.
    Miao X, Tan LP, Tan LS, Huang X (2007) Mater Sci Eng C 27:274CrossRefGoogle Scholar
  58. 58.
    Miao X, Lim G, Loh K-H, Boccaccini AR (2004) In: Khor KA, Ramanujan RV, Ooi CP, Zhao JH (eds) Materials processing for properties and performance (MP3), vol 3. Institute of Materials East Asia, pp 319–326Google Scholar
  59. 59.
    Miao X, Tan DM, Li J, Xiao Y, Crawford R (2008) Acta Biomater (in press). doi: https://doi.org/10.1016/j.actbio.2007.10.006 CrossRefGoogle Scholar
  60. 60.
    Pezzotti G, Asmus SMF (2001) Mater Sci Eng A A316:231CrossRefGoogle Scholar
  61. 61.
    Li SH, De Wijn JR, Layrolle P, De Groot K (2003) Key Eng Mater 240–242:147Google Scholar
  62. 62.
    Tencer AF, Woodard PL, Swenson J, Brown KL (1987) J Orthop Res 5(2):275CrossRefGoogle Scholar
  63. 63.
    Tencer AF, Mooney V, Brown KL, Silva PA (1985) J Biomed Mater Res 19:957CrossRefGoogle Scholar
  64. 64.
    Hench LL (1998) J Am Ceram Soc 81:1705CrossRefGoogle Scholar
  65. 65.
    Huang X, Miao X (2007) J Biomater Appl 21(4):351CrossRefGoogle Scholar
  66. 66.
    Nakahira A, Tamai M, Miki S, Pezotti G (2002) J Mater Sci 37:4425. doi: https://doi.org/10.1023/A:1020681309572 CrossRefGoogle Scholar
  67. 67.
    Miao X, Lim WK, Huang X, Chen Y (2005) Mater Lett 59:4000CrossRefGoogle Scholar
  68. 68.
    Kim HW, Knowles JC, Kim HE (2004) J Biomed Mater Res 70B:240CrossRefGoogle Scholar
  69. 69.
    Kim HW, Knowles KC, Kim HE (2004) Biomaterials 25:1279CrossRefGoogle Scholar
  70. 70.
    Tian T, Jiang D, Zhang J, Lin Q (2008) Mater Sci Eng C 28:51CrossRefGoogle Scholar
  71. 71.
    Kim HW, Knowles JC, Kim HE (2005) J Mater Sci Mater Med 16:189CrossRefGoogle Scholar
  72. 72.
    Chen QZ, Boccaccini AR (2006) J Biomed Mater Res 77A:445CrossRefGoogle Scholar
  73. 73.
    Chen QZ, Efthymiou A, Salih V, Boccaccini AR (2008) J Biomed Mater Res A 84:1049CrossRefGoogle Scholar
  74. 74.
    Bretcanu O, Chen QZ, Misra SK, Roy I, Verne’ E, Vitale Brovarone C, Boccaccini AR (2007) Eur J Glass Sci Technol A 48:227Google Scholar
  75. 75.
    Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Biomacromolecules 7(8):2249CrossRefGoogle Scholar
  76. 76.
    Wu C, Ramaswamy Y, Boughton P, Zreiqat H (2008) Acta Biomater 4:343Google Scholar
  77. 77.
    Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier G, Hamaide T (2007) J Eur Ceram Soc 27:2679 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Darmawati Mohamad Yunos
    • 1
  • Oana Bretcanu
    • 1
  • Aldo R. Boccaccini
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations