Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3245–3252 | Cite as

Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement

  • Rosa Medina
  • Frank Haupert
  • Alois K. Schlarb
Article

Abstract

Zirconium dioxide (ZrO2) nanoparticles were systematically added as reinforcement to a diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin. A series of composites with varying amounts of nanoparticles was prepared and their morphology and mechanical properties were studied. The obtained nanocomposites were characterized by tensile tests, dynamic mechanical thermal analysis, and fracture toughness (KIC) investigations; by standardized methods, to define the influence of the nanoparticle content on their mechanical and thermal properties. The morphological analysis of the composites shows that nanoparticles form small clusters, which are uniformly distributed into the matrix bulk. The tensile modulus (E) and the KIC of the epoxy matrix increase at rising zirconia content. Improvements of more than 37% on modulus and 100% on KIC were reached by the nanocomposite containing 10 vol.-% ZrO2 with respect to the neat epoxy (Eo = 3.1 GPa, KICo = 0.74 MPam0.5). The presence of nanoparticles produces also an increment on glass transition temperature (Tg). The epoxy resin added with 8 vol.-% ZrO2 records a Tg approximately 8% higher than the unmodified matrix (Tgo = 100.3 °C).

Keywords

Epoxy Dynamic Mechanical Thermal Analysis Crack Opening Displacement Filler Particle Epoxy Matrix 

Notes

Acknowledgements

The present work was developed within the frame of the Stiftung Industrieforschung Projekt S 657. R. Medina is grateful for the financial support of the German Service of Academic Exchange (DAAD).

References

  1. 1.
    Walter R, Friedrich K, Privalko V, Savadori A (1997) J Adhesion 64:87CrossRefGoogle Scholar
  2. 2.
    Wang K, Chen L, Wu J, Ling-Toh M, He C, Yee AF (2005) Macromolecules 38:788CrossRefGoogle Scholar
  3. 3.
    Kang S, Hong SI, Choe CR, Park M (2001) Polymer 42:879CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Rong MZ, Friedrich K (2005) In: Friedrich K, Fakirov S, Zhan Z (eds) From- nano- to- macro-scale. Springer, New York, p 25Google Scholar
  5. 5.
    Wetzel B, Haupert F, Zhang MQ (2003) Comp Sci and Tech 63:2055CrossRefGoogle Scholar
  6. 6.
    Ng CB, Schadler LS, Siegel RW (1999) Nanostruct Mater 12:507CrossRefGoogle Scholar
  7. 7.
    Richerson DW (1992) Modern ceramics engineering. Marcel Dekker, New York, p 166, 756Google Scholar
  8. 8.
    Brook R, Cahn R (1991) Concise encyclopedia of advanced ceramic materials. Pergamon, Oxford, p 526Google Scholar
  9. 9.
    Xiao K, Ye L, Kwok YS (1998) J Mater Sci 33:2831. doi: https://doi.org/10.1023/A:1017533819817 CrossRefGoogle Scholar
  10. 10.
    Zhang H (2007) Fracture of nanoparticle filled polymer composites. Institute of Composite Materials, KaiserslauternGoogle Scholar
  11. 11.
    Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344CrossRefGoogle Scholar
  12. 12.
    Lewis TB, Nielsen LE (1970) J Appl Polym Sci 14:1449CrossRefGoogle Scholar
  13. 13.
    Nielsen EL, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New YorkGoogle Scholar
  14. 14.
    Mc-Gee S, Mc-Cullough RL (1981) Polym Comp 2:149CrossRefGoogle Scholar
  15. 15.
    Petrovikova E, Knight R, Schadler LS, Twardowski TE (2000) J Appl Polym Sci 78:2272CrossRefGoogle Scholar
  16. 16.
    Roulin-Moloney AC (ed) (1989) Fractography and failure mechanisms of polymers and composites. Elsevier Applied Science, London, p 233Google Scholar
  17. 17.
    Yao XF, Yeh HY, Zhou D, Zhang YH (2006) J Compos Mater 40:371CrossRefGoogle Scholar
  18. 18.
    Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Eng Fract Mech 73:2375CrossRefGoogle Scholar
  19. 19.
    Sue H-J, Garcia Meitin EI, Pickelman DM, Bott CJ (1996) Colloid Polym Sci 274:1435CrossRefGoogle Scholar
  20. 20.
    Zuiderduin WCJ, Huetink J, Gaymans RJ (2006) Polymer 47:5880CrossRefGoogle Scholar
  21. 21.
    Lange FF (1970) Phil Mag 22:983CrossRefGoogle Scholar
  22. 22.
    Faber KT, Evans AG (1983) Acta Metall 31:565CrossRefGoogle Scholar
  23. 23.
    Evans AG, Williams S, Beaumont PWR (1985) J Mater Sci 20:3668. doi: https://doi.org/10.1007/BF01113774 CrossRefGoogle Scholar
  24. 24.
    Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science Publishers, LondonGoogle Scholar
  25. 25.
    Spanoudakis J, Young RJ (1984) J Mater Sci 19:473. doi: https://doi.org/10.1007/BF00553571 CrossRefGoogle Scholar
  26. 26.
    Zhao Q, Hoa SV (2007) J Compos Mater 41:201CrossRefGoogle Scholar
  27. 27.
    Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530CrossRefGoogle Scholar
  28. 28.
    Odegard GM, Clancy TC, Gates TS (2005) Polymer 46:553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für Verbundwerkstoffe GmbHUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations