Journal of Materials Science

, Volume 43, Issue 9, pp 3253–3258 | Cite as

The liquid metastable miscibility gap in the Cu–Co–Fe system

  • Stefano Curiotto
  • Livio Battezzati
  • Erik Johnson
  • Mauro Palumbo
  • Nini Pryds


Cu–Co–Fe alloys undercooled below a certain temperature display demixing of the liquid, followed by coagulation before dendritic solidification. In this article high temperature phase equilibria in Cu–Co–Fe samples have been precisely determined by DSC. Special attention has been paid to the liquid–liquid phase separation and on its effect on the formation of microstructures. The measured transformation temperatures have also been used to update the description of the ternary phase diagram.


Differential Scanning Calorimetry Ternary Phase Diagram Liquid Phase Separation Binary Interaction Parameter Liquid Demixing 



The work has been supported by the European Space Agency within the project CoolCop (ESA-MAP AO 99–010). A. Ziggiotti (Centro Ricerche Fiat, Orbassano, TO, Italy) is gratefully acknowledged for the measurement of carbon and sulphur in the alloys.


  1. 1.
    Nakagawa Y (1958) Acta Metal 6:704CrossRefGoogle Scholar
  2. 2.
    Battezzati L, Curiotto S, Pryds N, Johnson E (2006) Mater Sci Eng: A 449–451:7Google Scholar
  3. 3.
    Elder S, Munitz A, Abbaschian G (1989) Mater Sci Forum 50:137CrossRefGoogle Scholar
  4. 4.
    Cao CD, Görler G, Herlach D, Wei B (2002) Mater Sci Eng: A 325:503CrossRefGoogle Scholar
  5. 5.
    Wilde G, Willnecker R, Nandan Singh R, Sommer F (1997) Z Metallkd 88:804Google Scholar
  6. 6.
    Jellingahus W (1936) Archiv fur das Eisenhuttenwesen 10:115CrossRefGoogle Scholar
  7. 7.
    Maddocks W, Clausen G (1936) Iron and steel institute, London, Special Report 14:116Google Scholar
  8. 8.
    Kim DI, Abbaschian R (2000) J Phase Equilib 21:25CrossRefGoogle Scholar
  9. 9.
    Bamberger M, Munitz A, Kaufman L, Abbaschian R (2002) Calphad 26:375CrossRefGoogle Scholar
  10. 10.
    Cao CD, Görler G (2005) Chin Phys Lett 22:482CrossRefGoogle Scholar
  11. 11.
    Palumbo M, Curiotto S, Battezzati L (2006) Calphad 30:171CrossRefGoogle Scholar
  12. 12.
    Jönsson B, Sundman B, Ågren J (1993) Thermochim Acta 214:93CrossRefGoogle Scholar
  13. 13.
    Curiotto S, Pryds N, Johnson E, Battezzati L (2007) Fluid Phase Equilib 256:132CrossRefGoogle Scholar
  14. 14.
    Curiotto S, Pryds N, Johnson E, Battezzati L (2006) Metall Mater Trans 37:2361CrossRefGoogle Scholar
  15. 15.
    Ratke L, Diefenbach S (1995) Mater Sci Eng: R 15:263CrossRefGoogle Scholar
  16. 16.
    Wang CP, Liu XJ, Ohnuma I, Kainuma R, Ishida K (2002) Science 297:990CrossRefGoogle Scholar
  17. 17.
    SGTE Pure Elements database ver. 3.00, 1991 updated from: A.T. Dinsdale Calphad 5:(1981) 317Google Scholar
  18. 18.
    Jannson A (1986) Report d73. Technical report, KTH, University of Stockholm, SwedenGoogle Scholar
  19. 19.
    Ohnuma I, Enoki H, Ikeda O, Kainuma R, Ohtani H, Sundman B, Ishida K (2002) Acta Mater 50:379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stefano Curiotto
    • 1
    • 2
  • Livio Battezzati
    • 1
  • Erik Johnson
    • 3
    • 4
  • Mauro Palumbo
    • 1
  • Nini Pryds
    • 5
  1. 1.Dipartimento di Chimica IFM, Centro di Eccellenza NISUniversità di TorinoTorinoItaly
  2. 2.CINaM-CNRS, Campus de LuminyMarseilleFrance
  3. 3.Niels Bohr Institute, Nanoscience CentreUniversity of CopenhagenCopenhagenDenmark
  4. 4.Materials Research DepartmentRisoe National LaboratoryRoskildeDenmark
  5. 5.Fuel Cell and Solid State Chemistry DepartmentRisoe National LaboratoryRoskildeDenmark

Personalised recommendations