Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3166–3172 | Cite as

Evaluation of fatigue behavior on repaired carbon fiber/epoxy composites

  • Edson C. BotelhoEmail author
  • Mirabel C. Rezende
  • Sérgio Mayer
  • Herman Voorwald
Article

Abstract

The continuous use of structural polymer composites in aeronautical industry has required the development of repairing techniques of damages found in different types of laminates. The most usually adopted procedure to investigate the repair of composite laminates has been by repairing damages simulated in laminated composite specimens. This work shows the influence of structural repair technique on mechanical properties of a typical carbon fiber/epoxy laminate used in aerospace industry. When analyzed by tensile test, the laminates with and without repair present tensile strength values of 670 and 892 MPa, respectively, and tensile modulus of 53.0 and 67.2 GPa, respectively. By this result, it is possible to observe a decrease of the measured mechanical properties of the repaired composites. When submitted to fatigue test, it is observed that in loads higher than 250 MPa, this laminate presents a low life cycle (lower than 400,000 cycles). The fatigue performance of both laminates is comparable, but the non-repaired laminate presented higher tensile and fatigue resistance when compared with the repaired laminate.

Keywords

Fatigue Carbon Fiber Fatigue Damage Fatigue Load Fatigue Performance 

Notes

Acknowledgement

The authors acknowledge the financial support received from FAPESP under grants 05/54358-7 and 05/57015-3, CNPq (grant 303528/2003-6). The authors are also indebted to Mr. Manuel Francisco S. Filho for his help in the fatigue tests.

References

  1. 1.
    Jang BZ (1994) Advanced polymer composites: principles and applications, 1st edn. ASM International, Materials Park, OHGoogle Scholar
  2. 2.
    Peters ST (1998) Handbook of composites, 2nd edn. Chapman & HallGoogle Scholar
  3. 3.
    Mallick PK (1993) Fiber-reinforced composites, 2nd edn. Marcel DekkerGoogle Scholar
  4. 4.
    Gu W, Wu HF, Kampe SL, Lu GQ (1996) Mater Sci Eng A277:237Google Scholar
  5. 5.
    Mayer S (2003) Influência do Condicionamento Ambiental na Resistência à Tração de Laminados de Compósitos Poliméricos Reparados, PhD Thesis, ITA, BrazilGoogle Scholar
  6. 6.
    Ahn SH, Springer GS (1998) J Compos Mater 32(11):565Google Scholar
  7. 7.
    Botelho EC, Nogueira CL, Rezende MC (2002) J Appl Polym Sci 86:3114CrossRefGoogle Scholar
  8. 8.
    Botelho EC, Lauke B, Figiel L, Rezende MC (2003) Sci Technol 63:1843Google Scholar
  9. 9.
    Botelho EC, Pardini LC, Costa ML, Rezende MC (2005) J Mater Sci 40:3615. doi: https://doi.org/10.1007/s10853-005-0760-2 CrossRefGoogle Scholar
  10. 10.
    Cerny M, Glogar P, Manocha LM (2000) Carbon 38:2139CrossRefGoogle Scholar
  11. 11.
    Ashcroft IA et al (2001) Compos: Part A 32:45CrossRefGoogle Scholar
  12. 12.
    Connor M, Bidaux JE, Manson JAE (1997) J Mater Sci 32:5059. doi: https://doi.org/10.1023/A:1018657131178 CrossRefGoogle Scholar
  13. 13.
    Mahiou H, Béakou A (1998) Compos Part A 29A:1035CrossRefGoogle Scholar
  14. 14.
    Curtis PT, More BB (1983) Composites 14(3):1015CrossRefGoogle Scholar
  15. 15.
    De Wilde WP, Frolkovic P (1994) Composites 25(2):119CrossRefGoogle Scholar
  16. 16.
    Saravanos DA, Chamis CC (1990) AIAA J 28(10):1813CrossRefGoogle Scholar
  17. 17.
    Pandita SD, Verpoest I (2004) Compos Struct 64:199CrossRefGoogle Scholar
  18. 18.
    Kawai M, Yajima S, Hachinohe A, Kawase Y (2001) Compos Sci Technol 61:1285CrossRefGoogle Scholar
  19. 19.
    Khan Z, Al-Sulaiman FS, Farooqi JK (1998) J Reinf Plast Compos 17(15):1320CrossRefGoogle Scholar
  20. 20.
    Roudet F, Desplanques Y, Degallaix S (2002) Int J Fatigue 24:327CrossRefGoogle Scholar
  21. 21.
    Gregory JR, Spearing SM (2005) Compos Part A 36:665CrossRefGoogle Scholar
  22. 22.
    Botelho EC, Pardini LC, Rezende MC (2005) Mater Sci Eng A 399:190CrossRefGoogle Scholar
  23. 23.
    ABARIS (1998) Training advanced composite structures: fabrication and damage repair. Abaris Training Resources IncGoogle Scholar
  24. 24.
    Jang BZ (1994) Advanced polymer composites: principles and applications, 1st edn. ASM International, OH, USAGoogle Scholar
  25. 25.
    Pastore CM, Gowayed YA (1994) J Compos Technol Res 16(1):32CrossRefGoogle Scholar
  26. 26.
    Botelho EC, Pardini LC, Rezende MC (2005) Mater Sci Eng A 399:190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Edson C. Botelho
    • 1
    Email author
  • Mirabel C. Rezende
    • 2
  • Sérgio Mayer
    • 3
  • Herman Voorwald
    • 1
  1. 1.Department of Materials and TechnologySão Paulo State UniversityGuaratinguetáBrazil
  2. 2.Instituto de Aeronautica e EspaçoSao Jose dos CamposBrazil
  3. 3.Empresa Brasileira de Aeronáutica (EMBRAER), São José dos CamposSão PauloBrazil

Personalised recommendations