Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4069–4078 | Cite as

Investigation of the thermomechanical properties of industrial refractories: the French programme PROMETHEREF

  • Michel BoussugeEmail author
Rees Rawlings Festschrift

Abstract

This paper summarises the work that has been done in the framework of the French programme PROMETHEREF. This programme was concerned with the thermomechanical properties at high temperature of two industrial refractories: fused-cast materials for glass melting and alumina castables for steel production. At high temperature, both materials exhibit creep, that has been characterised by tension, compression and bending tests. The microstructural mechanisms of deformation have been investigated and allowed the macroscopic viscoplasticity to be understood. Both types of materials exhibit damage processes that have also been characterised mechanically and microstructurally. The nature and the adhesion of the aggregates have been shown to have a great influence on the mechanical behaviour of the castables, as well as the continuous zirconia skeleton observed in high-zirconia fused-cast refractories by X-rays tomography.

Keywords

Zirconia Creep Rate Glassy Phase Thermomechanical Property Thermal Expansion Mismatch 

Notes

Acknowledgements

The work related in this paper has been mainly performed by PhD students (Edwige Yeugo-Fogaing, Emilie Lataste, Hicham Marzagui, Kamel Madi, Ludovic Massard, Mohsen Roosefid) under the supervision of senior researchers (Anne Piant, Samuel Forest, Christian Gault, Christian Olagnon, Evariste Ouedraogo, Gilbert Fantozzi, Marc Huger, Thierry Cutard): all of them must be greatly acknowledged. The author, coordinator of this project, also wishes to thank the Ministry of Industry (Michel Mussino), Saint-Gobain CREE (Christophe Bert, Isabelle Cabodi, Michel Gaubil, Yves Boussant-Roux), TRB (Nicolas Prompt, Thierry Joly, Cyrille Deteuf) and EDF (Alain Guyonvarch, Patrick Billard, Yves Dutheillet) for their technical and financial support in this programme.

References

  1. 1.
    Boussuge M (2004) PROMETHEREF: a French research program for the study of thermomechanical properties of industrial refractories. Euro-Ceramics 8, 8th European ceramic society conf. proc, Istanbul, Turkey, June 29–July 3 2003, Key Eng Mater, vol 264–268, Part 3, p 1755CrossRefGoogle Scholar
  2. 2.
    Boussuge M (2003) Study of thermomechanical properties of industrial refractories: the French program PROMETHEREF. UNITECR ‘03, proceedings of the 8th unified international technical conference on refractories, Osaka, Japan, 19–22 October, p 513Google Scholar
  3. 3.
    Boussuge M (2004) Thermomechanical behaviour: from ceramics to refractories. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 605Google Scholar
  4. 4.
    Massard L (2005) Etude du fluage de réfractaires électrofondus du système alumine-zircone-silice. PhD Thesis, Ecole des Mines de ParisGoogle Scholar
  5. 5.
    Madi K (2006) Influence de la morphologie tridimensionnelle des phases sur le comportement mécanique de réfractaires électrofondus. PhD Thesis, Ecole des Mines de ParisGoogle Scholar
  6. 6.
    Lataste E (2005) Comportement mécanique et endommagement de réfractaires électrofondus sous sollicitation thermomécanique. PhD Thesis, INSA LyonGoogle Scholar
  7. 7.
    Yeugo-Fogaing E (2006) Caractérisation à haute température des propriétés d’élasticité de réfractaires électrofondus et de bétons réfractaires. PhD Thesis, Université de LimogesGoogle Scholar
  8. 8.
    Marzagui H (2005) Etude de deux bétons réfractaires silico-alumineux: microstructures et comportements thermomécaniques en traction et en flexion. PhD Thesis, Ecole des Mines d’Albi-CarmauxGoogle Scholar
  9. 9.
    Roosefid M (2006) Etude du comportement thermomécanique de deux bétons réfractaires silico-alumineux: applications à une poche d’aciérie. PhD Thesis, Institut National Polytechnique de GrenobleGoogle Scholar
  10. 10.
    Begley ER, Herndon PO (1971) Zirconia–alumina–silica refractories. In: Alper AM (ed) High temperature oxides, vol. 5-IV, Academic Press, p 185Google Scholar
  11. 11.
    Duvierre G, Boussant-Roux Y, Nelson M (1999) Fused zirconia or fused AZS: which is the best choice? Ceram Eng Sci Proc 20(1):65Google Scholar
  12. 12.
    Boussuge M (2007) Recent advances in the study of the thermomechanical properties of fused-cast refractories at macro and micro scales. 10th European ceramic society proc., Berlin, 17–21 June 2007, to be published in J Eur Ceram SocGoogle Scholar
  13. 13.
  14. 14.
    Madi K, Forest S, Boussuge M, Gailliègue S, Lataste E, Buffière JY, Bernard D, Jeulin D (2007) Finite element simulations of the deformation of fused-cast refractories based on X-ray computed tomography. Comput Mater Sci 39:224CrossRefGoogle Scholar
  15. 15.
    Madi K, Forest S, Cordier P, Boussuge M (2005) Numerical study of creep in two-phase aggregates with a large rheology contrast: implications for the lower mantle. Earth Planet Sci Lett 235:223CrossRefGoogle Scholar
  16. 16.
    Gault C (1989) Ultrasonic non-destructive evaluation of microstructural changes and degradation of ceramics at high temperature. In: Holbrook J, Bussière J (eds) Nondestructive monitoring of materials properties, vol 142. MRS, p 263Google Scholar
  17. 17.
    Huger M, Fargeot D, Gault C (2002) High temperature measurement of ultrasonic wave velocity in refractory materials. High Temp. High Press 34:193CrossRefGoogle Scholar
  18. 18.
    Tessier-Doyen N, Glandus JC, Huger M (2006) Untypical Young’s modulus evolution of model refractories at high temperature. J Eur Ceram Soc 26:289CrossRefGoogle Scholar
  19. 19.
    Yeugo-Fogaing E, Huger M, Gault C (2007) Elastic properties and microstructure: study of two fused cast refractory materials. J Eur Ceram Soc 27(2–3):1843CrossRefGoogle Scholar
  20. 20.
    Yeugo-Fogaing E, Lorgouilloux Y, Huger M, Gault C (2006) Young’s modulus of zirconia at high temperature. J Mater Sci Lett 41:7663CrossRefGoogle Scholar
  21. 21.
    Bansal GK, Heuer AH (1972) “On a martensitic phase transformation in zirconia (ZrO2)—I. Metallographic evidence. Acta Metall 20(11):1281CrossRefGoogle Scholar
  22. 22.
    Bansal GK, Heuer AH (1974) “On a martensitic phase transformation in zirconia” (ZrO2)—II. Crystallographic aspects. Acta Metall 22(4):409CrossRefGoogle Scholar
  23. 23.
    Kelly PM, Rose LRF (2000) The martensitic transformation in ceramics-Its role in transformation toughening. Prog Mater Sci 47:463CrossRefGoogle Scholar
  24. 24.
    Sands CM, Henderson RJ, Chandler HW (2007) A three dimensional computational model of the mechanical response of a dual-phase ceramic. Comput Mater Sci 39:862CrossRefGoogle Scholar
  25. 25.
    Huger M, Tessier-Doyen N, Chotard T, Gault C (2007) Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories: Investigation by high temperature ultrasounds. Ceramic Forum International, Special issue on “mechanical and thermal behaviour of refractories”, p E93Google Scholar
  26. 26.
    Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University PressGoogle Scholar
  27. 27.
    Ohtsu M (1999) Estimation of crack and damage progression in concrete by quantitative acoustic emission analysis. Mater Eval 521Google Scholar
  28. 28.
    Ohtsu M, Watanabe H (2001) Quantitative damage estimation of concrete by acoustic emission. Const Build Mater 15:217CrossRefGoogle Scholar
  29. 29.
    Massard L, Madi K, Boussuge M, Forest S, Yeugo-Fogaing E, Huger M, Gault C (2004) High temperature mechanical behaviour of fused-cast refractories. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 631Google Scholar
  30. 30.
    Muto H, Sakai M (1998) Grain-boundary sliding and grain interlocking in the creep deformation of two-phase ceramics. J Am Ceram Soc 81(6):1611CrossRefGoogle Scholar
  31. 31.
    Wilkinson DS (1998) Creep mechanisms in multiphase ceramic materials. J Am Ceram Soc 81(2):275CrossRefGoogle Scholar
  32. 32.
    Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University PressGoogle Scholar
  33. 33.
    Boussuge M (2004) Thermomechanical behaviour: from ceramics to refractories. In: “Advances in refractories for the metallurgical industries IV” proc., 4th Int.Symp, Hamilton, Canada, 22–25 August, p 605Google Scholar
  34. 34.
    Schmitt N, Hernandez J-F, Lamour V, Berthaud Y, Meunier P, Poirier J (2000) Coupling between kinetics of dehydration, physical and mechanical behaviour for high alumina castable. Cement Concr Res 30:1597CrossRefGoogle Scholar
  35. 35.
    Marzagui H, Cutard T, Yeugo-Fogaing E, Huger M, Gault C, Prompt N, Deteuf C (2004) Microstructural changes and high temperature mechanical behavior of an andalusite based low cement castable. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 331Google Scholar
  36. 36.
    Marzagui H, Cutard T (2004) Characterisation of microstructural evolutions in refractory castables by in situ high temperature ESEM. J Mater Process Technol 155–156(11):1474CrossRefGoogle Scholar
  37. 37.
    Nazaret F, Marzagui H, Cutard T (2006) Influence of mechanical behaviour specificities of damaged refractory castables on the Young’s modulus determination. J Eur Ceram Soc 26(8):1429CrossRefGoogle Scholar
  38. 38.
    Marzagui H, Cutard T, Roosefid M, Ouedraogo E, Prompt N, Deteuf C (2004) Room temperature mechanical behaviour of two refractory castables. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 645Google Scholar
  39. 39.
    Roosefid M, Ouedraogo E, Marzagui H, Cutard T, Prompt N, Deteuf C (2005) Thermomechanical behaviour of two refractory castables. In: UNITECR ‘05, Proceedings of the 9th unified international technical conference on refractories, Jeffrey D. Smith (ed), Wiley-American Ceramic Society, 8–11 November, Orlando, Florida, USA, p 1003Google Scholar
  40. 40.
    Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Doctorat Es-Sciences Physiques, Université Paris VIGoogle Scholar
  41. 41.
    Mazars J (1986) A description of micro and micro-scale damage of concrete structure. Eng Fract Mech 25:729CrossRefGoogle Scholar
  42. 42.
    Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech, ASCE 115:345CrossRefGoogle Scholar
  43. 43.
    Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33(20–22):3327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Ecole des Mines de ParisCentre des Matériaux P.M. FourtEvry cedexFrance

Personalised recommendations