Journal of Materials Science

, Volume 43, Issue 9, pp 3274–3278 | Cite as

Synthesis of TiO2 nanoparticles through the Gel Combustion process

  • F. A. DeorsolaEmail author
  • D. Vallauri


Nanosized titania particles have been synthesized through the Gel Combustion process. The synthesis was carried out by starting from a common and low-cost titanium precursor and hydrogen peroxide as combustible substance. The process led to a significant gas development and the as-synthesized nanoparticles showed a low degree of crystallinity and mean dimension of 20 nm. Different thermal treatments were performed so as to investigate their effect on the structural properties and on the particle size of the synthesized products. The optimal temperature was set at 300 °C, giving pure anatase TiO2 nanopowders with a good level of crystallinity, an average particle size of 50 nm and a high value of specific surface area.


TiO2 Titanium Tetraisopropoxide Titanium Precursor TiO2 Nanopowders Solution Combustion Synthesis 



The authors gratefully acknowledge Professor I. Amato for the overview of the technical work and the useful discussion.


  1. 1.
    Feldman C (2001) Adv Mater 13:1301CrossRefGoogle Scholar
  2. 2.
    Ferrari M (2005) Nat Rev Cancer 5:161CrossRefGoogle Scholar
  3. 3.
    Fergus JW (2003) J Mater Sci 38:4259. doi: CrossRefGoogle Scholar
  4. 4.
    Mills A, Le Hunte S (1997) J Photochem Photobiol A-Chem 108:1CrossRefGoogle Scholar
  5. 5.
    O’Regan B, Grätzel M (1991) Nature 352:373Google Scholar
  6. 6.
    Siegel RW, Ramasamy S, Hahn H, Li Z, Lu T, Gronsky R (1988) J Mater Res 3:1367CrossRefGoogle Scholar
  7. 7.
    Morales BA, Novaro O, Lopez T, Sanchez E, Gomez R (1995) J Mater Res 10:2788CrossRefGoogle Scholar
  8. 8.
    Terwillinger CD, Chiang YM (1993) Nanostruct Mater 2:37CrossRefGoogle Scholar
  9. 9.
    Pechini MP (1967) US Patent 3330697 1967Google Scholar
  10. 10.
    Fraigi L, Lamas DG, Walsöe de Reca NE (1999) Nanostruct Mater 11:311CrossRefGoogle Scholar
  11. 11.
    Fraigi L, Lamas DG, Walsöe de Reca NE (2001) Mater Lett 47:262CrossRefGoogle Scholar
  12. 12.
    Lian JS, Zhang XY, Zhang HP, Jiang ZH, Zhang J (2004) Mater Lett 58:1183CrossRefGoogle Scholar
  13. 13.
    Yang J, Lian J, Dong Q, Guan Q, Chen J, Guo Z (2003) Mater Lett 57:2792CrossRefGoogle Scholar
  14. 14.
    Yue Z, Li L, Zhou J, Zhang H, Gui Z (1999) Mater Sci Eng B-Solid 64:68CrossRefGoogle Scholar
  15. 15.
    Sivalingam G, Madras G (2004) Appl Catal A-Gen 269:81CrossRefGoogle Scholar
  16. 16.
    Sivalingam G, Nagaveni K, Hegde MS, Madras G (2003) Appl Catal B-Environ 45:23CrossRefGoogle Scholar
  17. 17.
    Yan QZ, Su XT, Zhou YP, Ge CC (2005) Acta Phys-Chim Sin 21:57Google Scholar
  18. 18.
    Yan QZ, Su XT, Zhou YP, Ge CC (2005) Rare Metals 24:125Google Scholar
  19. 19.
    Yan QZ, Su XT, Huang ZY, Ge CC (2006) J Eur Ceram Soc 26:915CrossRefGoogle Scholar
  20. 20.
    Xiao Q, Si ZC, Yu ZM, Qiu GZ (2007) Mater Sci Eng B-Solid 137:189CrossRefGoogle Scholar
  21. 21.
    Xiao Q, Si Z, Zhang J, Xiao C, Zhiming Y, Qiu G (2007) J Mater Sci 42:9194. doi: CrossRefGoogle Scholar
  22. 22.
    Anuradha TV, Ranganathan S (2007) Bull Mater Sci 30:263CrossRefGoogle Scholar
  23. 23.
    Wang CM, Wu H, Chung SL (2006) J Porous Mater 13:307CrossRefGoogle Scholar
  24. 24.
    Ragai J, Selim SI (1986) J Colloid Interface Sci 115:139CrossRefGoogle Scholar
  25. 25.
    Symons MCR (1987) Nature 325:659CrossRefGoogle Scholar
  26. 26.
    Tengvall P, Lundström I, Sjöqvist L, Elwing H, Bjursten LM (1989) Biomaterials 10:166CrossRefGoogle Scholar
  27. 27.
    JCPDS 21-1272Google Scholar
  28. 28.
    JCPDS 89-4202Google Scholar
  29. 29.
    Mimani T, Patil KC (2001) Mater Phys Mech 4:134Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dipartimento di Scienza dei Materiali e Ingegneria ChimicaPolitecnico di TorinoTorinoItaly

Personalised recommendations