Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3001–3008 | Cite as

High-speed imaging and CFD simulations of a deforming liquid metal droplet in an electromagnetic levitation experiment

  • P. Chapelle
  • A. Jardy
  • D. Ablitzer
  • Yu. M. Pomarin
  • G. M. Grigorenko
Interface Science

Abstract

Electromagnetic levitation of a liquid metal droplet is of great interest to study gas–liquid metal reactions. An important prerequisite for the evaluation of the overall mass transfer between the gas and metal is to characterize the geometry of the deforming molten droplet, which determines the interfacial reaction area. In this article, the free surface shape and dynamics of a molten 80%Ni–20%Cr droplet is investigated both experimentally and numerically. The frequencies associated to the oscillatory translational motions of the drop and to the vibrations of its free surface are measured using high-speed video image analysis. A 2D transient model is then presented, in which three interacting phenomena are considered: electromagnetic phenomena, the turbulent flow of liquid metal in the drop and the change in the drop shape. The numerical results presented demonstrate the capabilities of the model.

Keywords

Liquid Metal Electromagnetic Force Levitation Force Surface Oscillation Molten Droplet 

References

  1. 1.
    Bakhtiyarov SI, Overfelt RA (2003) Recent Res Dev Mater Sci 4:81Google Scholar
  2. 2.
    Petitnicolas L, Jardy A, Ablitzer D (1998) Rev Metall CIT/Sci Génie Mater 95:177 (in French)Google Scholar
  3. 3.
    Cummings DL, Blackburn DA (1991) J Fluid Mech 224:395CrossRefGoogle Scholar
  4. 4.
    Egry I (2005) Int J Thermophys 26:931CrossRefGoogle Scholar
  5. 5.
    Szekely J, Schwartz E (1994) In: Proceedings of the international symposium on electromagnetic processing of materials, Nagoya, Japan, p 9Google Scholar
  6. 6.
    Berry SR, Hyers RW, Racz LM, Abedian B (2005) Int J Thermophys 26:1565CrossRefGoogle Scholar
  7. 7.
    Bojarevics V, Pericleous K (2003) ISIJ Int 43:890CrossRefGoogle Scholar
  8. 8.
    Berry S, Hyers RM, Abedian B, Racz LM (2000) Metall Mater Trans B 31B:171CrossRefGoogle Scholar
  9. 9.
    FLUENT Documentation (User’s Guide, UDF Manual) version 6.2.16. Fluent, Inc., Lebanon, New Hampshire (2005)Google Scholar
  10. 10.
    Hirt CW, Nichols BD (1981) J Comput Phys 39:201CrossRefGoogle Scholar
  11. 11.
    Youngs DL (1982) In: Morton KW, Baines MJ (eds) Numerical methods for fluid dynamics. Academic Press, New York, p 273Google Scholar
  12. 12.
    Brackbill JU, Kothe DB, Zemach C (1992) J Comput Phys 100:335CrossRefGoogle Scholar
  13. 13.
    Delannoy Y, Pelletier D, Etay J, Fautrelle Y (2002) In: Proceedings of PAMIR conference, Ramatuelle, FranceGoogle Scholar
  14. 14.
    Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, p 473Google Scholar
  15. 15.
    Bojarevics V, Pericleous K (2001) Magnetohydrodyn 37:93Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. Chapelle
    • 1
  • A. Jardy
    • 1
  • D. Ablitzer
    • 1
  • Yu. M. Pomarin
    • 2
  • G. M. Grigorenko
    • 2
  1. 1.LSG2M – Ecole des Mines, CNRSNancy CedexFrance
  2. 2.The E.O. Paton Electric Welding InstituteKievUkraine

Personalised recommendations