Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3130–3134 | Cite as

Proton conductivity of biopolymer–platinum nanoparticle composite under high humidity

  • Musashi FujishimaEmail author
  • Hiroaki Takatori
  • Kasumi Yamai
  • Yuki Nagao
  • Hiroshi Kitagawa
  • Kumao Uchida
Article

Abstract

A κ-carrageenan–Pt nanoparticle composite (Cg–Pt) was synthesized and its proton conductivity was examined by a complex-plane impedance method. The synthesized Cg–Pt was characterized by transmission electron microscope (TEM) observation, powder X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) absorption measurements, and thermogravimetry/mass spectrometry (TG/MS) analysis. It was revealed that the a.c. electrical conductivity of Cg–Pt strongly depends on relative humidity (RH) and exceeds the conductivity of Cg under conditions of high humidity. From the temperature dependence of the a.c. conductivity, activation energies for protonic conduction were estimated to be 0.47 and 0.34 eV for Cg–Pt and Cg, respectively. The origin of the differences in the conductivities and activation energies are discussed.

Keywords

Proton Conductivity Nanoparticle Composite Polymer Electrolyte Fuel Cell Proton Migration High Humidity Condition 

Notes

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (No. 17750060) and Nanotechnology Network Project (Kyushu-area Nanotechnology Network) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and by the Japan Securities Scholarship Foundation, CASIO Science Promotion Foundation, Kansai Research Foundation for technology promotion, and Nippon Sheet Glass Foundation for Materials Science and Engineering.

References

  1. 1.
    Akiba E (2005) Advanced technologies and materials for hydrogen energy. CMC Publishing, TokyoGoogle Scholar
  2. 2.
    Yamauchi M, Kitagawa H (2005) Synth Met 153:353CrossRefGoogle Scholar
  3. 3.
    Yamauchi M, Kitagawa H (2005) Chem Eng Trans 8:159Google Scholar
  4. 4.
    Lu P, Teranishi T, Asakura K, Miyake M, Toshima N (1999) J Phys Chem B 103:9673CrossRefGoogle Scholar
  5. 5.
    Ohtaki M, Toshima N, Komiyama M, Hirai H (1990) Bull Chem Soc Jpn 63:1433CrossRefGoogle Scholar
  6. 6.
    Brugger P-A, Cuendet P, Grätzel M (1981) J Am Chem Soc 103:2923CrossRefGoogle Scholar
  7. 7.
    Toshima N, Nakata K, Kitoh H (1997) Inorg Chim Acta 265:149CrossRefGoogle Scholar
  8. 8.
    Roeder J, Silva H, Nunes SP, Pires ATN (2005) Solid State Ionics 176:1411CrossRefGoogle Scholar
  9. 9.
    Mikrajuddin FG, Shi K, Okuyama J (2000) Electrochem Soc 147:3157CrossRefGoogle Scholar
  10. 10.
    Steinbüchel A, Marchessault RH (2005) Biopolymers for medical and pharmaceutical applications. Wiley-VCH, WeinheimGoogle Scholar
  11. 11.
    Scherrer P (1918) Nachr Gött 2:98Google Scholar
  12. 12.
    Colomban P (1992) Proton conductors solids, membranes and gels—materials and devices. Cambridge University Press, New YorkCrossRefGoogle Scholar
  13. 13.
    Maier J (1995) Prog Solid State Chem 23:171CrossRefGoogle Scholar
  14. 14.
    Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) J Phys Chem B 103:3818CrossRefGoogle Scholar
  15. 15.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Musashi Fujishima
    • 1
    Email author
  • Hiroaki Takatori
    • 1
  • Kasumi Yamai
    • 1
  • Yuki Nagao
    • 1
  • Hiroshi Kitagawa
    • 1
  • Kumao Uchida
    • 1
  1. 1.School of Science and EngineeringKinki UniversityHigashi-OsakaJapan

Personalised recommendations