Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3320–3326 | Cite as

Redox processes at grain boundaries in barium titanate-based polycrystalline ferroelectrics semiconductors

  • Antolii Belous
  • Oleg V’yunovEmail author
  • Maya Glinchuk
  • Valentin Laguta
  • Darko Makovez
Article

Abstract

Barium titanate, which is characterized by a positive temperature coefficient of resistance (PTCR), is widely used in practice. At the same time, it is unknown why only a small percentage of the introduced donor dopant takes part in the formation of PTCR effect, which phases appear at grain boundaries, how the introduced acceptor dopants affect the properties of grains. Elucidation of the above questions is of considerable scientific and practical interest. It has been shown that the phases Bа6Ti17O40 and Y2Ti2O7 precipitate on grains of barium titanate doped with donor dopant (yttrium). We identified paramagnetic impurities (iron, manganese, chromium) in starting reagents. These impurities can occupy titanium sites. Therefore, the part of the donor dopant that is spent on the charge exchange of acceptor dopants does not participate in the charge exchange of titanium Ti4+ → Ti3+, which is responsible for the appearance of PTCR effect in barium titanate. It has been found that an extra acceptor dopant (manganese) is distributed mainly at grain boundaries and in the grain outer layer. It has been shown that manganese ions introduced additionally (as acceptor dopants) increase the potential barrier at grain boundaries and form a high-resistance outer layer in PTCR ceramics. The resistance of grains, outer layers, and grain boundaries as a function of the manganese content has been investigated.

Keywords

Yttrium BaTiO3 Charge Exchange Barium Titanate Positive Temperature Coefficient 

References

  1. 1.
    Saburi O (1959) J Phys Soc Jpn 14:1159CrossRefGoogle Scholar
  2. 2.
    Tennery VJ, Cook RL (1961) J Amer Ceram Soc 44(4):187CrossRefGoogle Scholar
  3. 3.
    Rotenberg BA, Yu L, Danilyuk (1967) Izv AN SSSR Ser Fiz 31(11):1824Google Scholar
  4. 4.
    Belous AG, V’yunov OI, Khomenko BS (1998) Inorg Mater 34(6):725Google Scholar
  5. 5.
    Kostikova GP, Kostikov YP (1997) Chemical processes during doping of oxides, St. Petersburg, 156 pGoogle Scholar
  6. 6.
    Zhi J, Chen A, Zhi Y, Vilarihno PM, Baptista JL (1999) J Am Ceram Soc 82(5):1345CrossRefGoogle Scholar
  7. 7.
    Okazaki O (1977) Semiconducting barium titanate, Tokyo, GakkensyaGoogle Scholar
  8. 8.
    Heywang V (ed) (1987) Amorphous and polycrystalline semiconductors (trans: Heywang V, Birkholtz U, Aintziger R et al (Germ)) Moscow, Mir, 160 pGoogle Scholar
  9. 9.
    Makovec D, Drofenik M (2000) J Am Ceram Soc 83(10):2593CrossRefGoogle Scholar
  10. 10.
    Buskaglia MT, Buskaglia V, Viviani M, Nanni P (1998) Doping of BaTiO3 with rare-earth oxide, 9th international conference on modern materials & technologies. Florence, ItalyGoogle Scholar
  11. 11.
    Evans HT (1961) Acta Cryst 14:1019CrossRefGoogle Scholar
  12. 12.
    Kato M, Kubo T (1967) J Chem Soc Jpn 70(6):840Google Scholar
  13. 13.
    Negas T, Roth RS, Parker HS, Minor D (1981) J Solid Stale Chem 9:287Google Scholar
  14. 14.
    Al-Allak HM, Brinkman AW, Russel GJ, Woods J (1988) J Appl Phys 63(9):4530CrossRefGoogle Scholar
  15. 15.
    Lee JH, Kim SH, Cho SH (1995) J Amer Ceram Soc 78(10):2845CrossRefGoogle Scholar
  16. 16.
    Huybrechts B, Ishizaki K, Takata M (1992) J Am Ceram Soc 75:722CrossRefGoogle Scholar
  17. 17.
    Huybrechts B, Takata M, Ishizaki K (1994) Ceram Transact Am Ceram Soc 44:151Google Scholar
  18. 18.
    Miki T, Fudjimoto A, Jida S (1998) J Appl Phys 83(3):1592CrossRefGoogle Scholar
  19. 19.
    Langhammer HT, Muller T, Felgner K-H, Abich H-P (2000) J Am Ceram Soc 83(3):605CrossRefGoogle Scholar
  20. 20.
    Langhammer HT, Muller T, Felgner K-H, Abich H-P (2000) Mater Lett 42:21CrossRefGoogle Scholar
  21. 21.
    Sinclair DC, Morrison FD, West AR (2000) International Ceramics 2:33Google Scholar
  22. 22.
    Morrison FD, Sinclair DC, West AR (2001) J Am Ceram Soc 84(2):474CrossRefGoogle Scholar
  23. 23.
    Morrison FD, Sinclair DC, West AR (2001) J Am Ceram Soc 4(3):531CrossRefGoogle Scholar
  24. 24.
    Morrison FD, Coats AM, Sinclair DC, West AR (2001) J Electroceram 6(3):219CrossRefGoogle Scholar
  25. 25.
    Altbersen K, Hennings D, Steigelmann O (1998) J Electroceram 2–3:193Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Antolii Belous
    • 1
  • Oleg V’yunov
    • 1
    Email author
  • Maya Glinchuk
    • 2
  • Valentin Laguta
    • 2
  • Darko Makovez
    • 3
  1. 1.V.I. Vernadskii Institute of General and Inorganic ChemistryKyivUkraine
  2. 2.Frantsevich Institute for Problems of Materials SciencesKyivUkraine
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations