Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3135–3143 | Cite as

Structural and chemical properties of nanocrystalline La0.5Sr0.5CoO3−δ layers on yttria-stabilized zirconia analyzed by transmission electron microscopy

  • L. Dieterle
  • D. Bach
  • R. Schneider
  • H. Störmer
  • D. Gerthsen
  • U. Guntow
  • E. Ivers-Tiffée
  • A. Weber
  • C. Peters
  • H. Yokokawa
Article

Abstract

Nanocrystalline La1−xSrxCoO3−δ (LSC) thin films with a nominal Sr content x = 0.5 were deposited on 3.5 mol% yttria-stabilized zirconia (YSZ) substrates by a low-temperature sol–gel process followed by a rapid thermal annealing procedure at temperatures up to 900 °C. The structural and chemical stability of the as-prepared nanocrystalline LSC and demixing effects within the thin film or at the LSC/YSZ interface were studied after long-time exposure at temperatures between 700 °C and 1,000 °C. The grain size and surface topography were analyzed by scanning electron microscopy. Transmission electron microscopy combined with selected-area electron diffraction, energy-dispersive X-ray spectrometry, and electron-spectroscopic imaging was applied for the investigation of the microstructure and the analysis of the local chemical composition and element distribution on the nanoscale. Chemical potential calculations, which were performed to assess the decomposition of LSC/YSZ as a function of temperature, show good agreement with the experimental results.

Keywords

Co3O4 Cobalt Oxide Rapid Thermal Annealing SAED Pattern Superstructure Reflection 

Notes

Acknowledgements

This work has been performed within the project D5 of the DFG Research Center for Functional Nanostructures (CFN) and within a joint DFG-NSF project. It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14–300).

References

  1. 1.
    Petrov AN, Kononchuk OF, Andreev AV et al (1995) Solid State Ionics 80:189CrossRefGoogle Scholar
  2. 2.
    Ralph JM, Schoeler AC, Kumpelt M (2001) J Mater Sci 36:1161CrossRefGoogle Scholar
  3. 3.
    Ivers-Tiffée E, Weber A, Herbstritt D (2001) J Eur Ceram Soc 21:1805CrossRefGoogle Scholar
  4. 4.
    Tuller HL (2000) Solid State Ionics 131:143CrossRefGoogle Scholar
  5. 5.
    Chen X, Wu NJ, Ritums DJ et al (1999) Thin Solid Films 342:61CrossRefGoogle Scholar
  6. 6.
    Baumann FS, Fleig J, Konuma M et al (2005) J Electrochem Soc 152:2074CrossRefGoogle Scholar
  7. 7.
    Baumann FS, Fleig J, Habermeier H-U et al (2006) Solid State Ionics 177:1071CrossRefGoogle Scholar
  8. 8.
    Koep E, Jin C, Haluska M et al (2006) J Power Sources 161:250CrossRefGoogle Scholar
  9. 9.
    Imanishi N, Sumiya Y, Yoshimura K et al Solid State Ionics 177:2165Google Scholar
  10. 10.
    Sase M, Ueno D, Yashiro K et al (2005) J Phys Chem Solids 66:343CrossRefGoogle Scholar
  11. 11.
    Klenov DO, Donner W, Chen L et al (2003) J Mater Res 18:188CrossRefGoogle Scholar
  12. 12.
    Bieberle-Hütter A, Tuller HL (2006) J Electroceram 16:151CrossRefGoogle Scholar
  13. 13.
    Beckel D, Dubach A, Studart AR et al (2006) J Electroceram 16:221CrossRefGoogle Scholar
  14. 14.
    Kim BJ, Lee J, Yoo JB (1999) Thin Solid Films 341:13CrossRefGoogle Scholar
  15. 15.
    Pagnaer J, Hardy A, Mondelaers D et al (2005) Mater Sci Eng B 118:79CrossRefGoogle Scholar
  16. 16.
    Zergioti I, de Laat AWM, Guntow U et al (1999) Appl Phys A 69:433CrossRefGoogle Scholar
  17. 17.
    Kweon HJ, Kuk S-T, Park H-B et al (1996) J Mater Sci Lett 15:428Google Scholar
  18. 18.
    Hwang HJ, Moon J, Awano M et al (2000) J Am Ceram Soc 83:2852CrossRefGoogle Scholar
  19. 19.
    De Souza RA, Kilner JA (1998) Solid State Ionics 106:175CrossRefGoogle Scholar
  20. 20.
    Chen CC, Nasrallah MM, Anderson HU (1993) In: Proceedings of the 3rd International Symposium on SOFC, The Electrochemical Society, Pennington, NJGoogle Scholar
  21. 21.
    Yamamoto O, Takeda Y, Kanno R et al (1987) Solid State Ionics 22:241CrossRefGoogle Scholar
  22. 22.
    Ivers-Tiffée E, Schießl M, Oel HJ et al (1993) In: Singhal SC, Iwahara H (eds) Solid oxide fuel cells III, The electrochemical society proceedings series, Pennington, NJGoogle Scholar
  23. 23.
    Yokokawa H, Sakai N, Kawada T et al (1991) J Electrochem Soc 138:2719CrossRefGoogle Scholar
  24. 24.
    Tu HY, Takeda Y, Imanishi N et al (1999) Solid State Ionics 117:277CrossRefGoogle Scholar
  25. 25.
    Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719CrossRefGoogle Scholar
  26. 26.
    Beckel D, Bieberle-Hütter A, Harvey A et al (2007) J Power Sources 173:325CrossRefGoogle Scholar
  27. 27.
    Klenov DO, Donner W, Foran B et al (2003) Appl Phys Lett 82:3427CrossRefGoogle Scholar
  28. 28.
    Stemmer S, Jacobson AJ, Chen X et al (2001) J Appl Phys 90:3319CrossRefGoogle Scholar
  29. 29.
    Wang ZL, Zhang J (1995) Philos Mag A 72:1513CrossRefGoogle Scholar
  30. 30.
    Wang ZL, Zhang J (1996) Phys Rev B 54:1153CrossRefGoogle Scholar
  31. 31.
    Wang ZL, Yin JS (1998) Philos Mag B 77:49CrossRefGoogle Scholar
  32. 32.
    Reimer L (1993) Transmission electron microscopy. Physics of image formation and microanalysis (series in optical sciences), Springer-Verlag Berlin and Heidelberg GmbH & Co. KGoogle Scholar
  33. 33.
    Li J, Malis T, Dione S (2006) Mater Charact 57:64CrossRefGoogle Scholar
  34. 34.
    Haggerty RP, Seshadri R (2004) J Phys Condens Matter 16:6477CrossRefGoogle Scholar
  35. 35.
    Mineshige A, Inaba M, Yao T et al (1996) J Solid State Chem 121:423CrossRefGoogle Scholar
  36. 36.
    Stadelmann P (2003) Microsc Microanal 9:60Google Scholar
  37. 37.
    Smith WL, Hobson AD (1973) Acta Crystallogr B 29:362CrossRefGoogle Scholar
  38. 38.
    Taylor D (1984) Trans J Br Ceram Soc 83:5Google Scholar
  39. 39.
  40. 40.
    Yokokawa H, Sakai N, Kawada T et al (1992) Solid State Ionics 52:43CrossRefGoogle Scholar
  41. 41.
    Wagman DD, Evans WH, Parker VB et al (1982) J Phys Chem Ref Data 11(2):392Google Scholar
  42. 42.
    Yokokawa H, Sakai N, Kawada T et al (1991) J Electrochem Soc 139(9):2719 and references quoted thereinCrossRefGoogle Scholar
  43. 43.
    Yokokawa H, Sakai N, Kawada T et al (1989) Denki Kagaku 57:821Google Scholar
  44. 44.
    Yokokawa H, Sakai N, Kawada T et al (1989) Denki Kagaku 57:829Google Scholar
  45. 45.
    Yokokawa H, Sakai N, Kawada T et al (1990) Denki Kagaku 58:161Google Scholar
  46. 46.
    Yokokawa H, Sakai N, Kawada T et al (1990) Denki Kagaku 58:489Google Scholar
  47. 47.
    Vashook VV, Zinkevich MV, Ullmann H et al (1997) Solid State Ionics 99:23CrossRefGoogle Scholar
  48. 48.
    Cherepanov VA, Gavrilova LY, Barkhatova LY et al (1998) Ionics 4:309CrossRefGoogle Scholar
  49. 49.
    Rao CNR, Gopalakrishnan J, Vidyasagar K (1984) Indian J Chem A 23:265Google Scholar
  50. 50.
    Hadermann J, Van Tendeloo G, Abakumov AM (2005) Acta Crystallogr A 61:77CrossRefGoogle Scholar
  51. 51.
    Wang YG, Steinsvik S, Høier R et al (1995) J Mater Sci Lett 14:1027CrossRefGoogle Scholar
  52. 52.
    Burriel M, Garcia G, Santiso J et al (2005) Thin Solid Films 473:98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. Dieterle
    • 1
  • D. Bach
    • 1
  • R. Schneider
    • 1
  • H. Störmer
    • 1
  • D. Gerthsen
    • 1
  • U. Guntow
    • 2
  • E. Ivers-Tiffée
    • 3
  • A. Weber
    • 3
  • C. Peters
    • 3
  • H. Yokokawa
    • 4
  1. 1.Laboratorium für Elektronenmikroskopie and DFG Center for Functional Nanostructures (CFN)Universität KarlsruheKarlsruheGermany
  2. 2.Fraunhofer-Institut für SilicatforschungWurzburgGermany
  3. 3.Institut für Werkstoffe der Elektrotechnik and CFNUniversität KarlsruheKarlsruheGermany
  4. 4.National Institute of Advanced Industrial Science and Technology (AIST), Energy Technology Research InstituteTsukubaJapan

Personalised recommendations