Journal of Materials Science

, Volume 43, Issue 14, pp 4675–4683 | Cite as

A mechanism of nucleation during thermal decomposition of solids

  • Loïc FavergeonEmail author
  • Michèle Pijolat
  • Céline Helbert
Reactivity of Solids


A microscopic model based on the appearance, diffusion, and aggregation of point defects allows to calculate the time of appearance of the first nucleus on a surface during a reaction between a solid and a gas. Calculated distributions of these times of appearance of the first nucleus are qualitatively compared to experimental ones, previously determined. The appearance of the point defects seems to be the most influential step on the time of appearance of the first nucleus. Moreover the comparison between experimental and calculated distributions allows to conclude that the frequency of appearance of the defects is higher on the edges than on the faces of the single crystal.


Water Vapor Pressure Lithium Atom Li2SO4 Calculated Distribution Initial Defect 



The authors wish to thank Françoise Valdivieso for her contribution to this work.


  1. 1.
    Jacobs PWM, Tompkins FC (1955) In: Garner WE (ed) Chemistry of the solid state, chap 7. Butterworths, LondonGoogle Scholar
  2. 2.
    Brown ME, Dollimore D, Galwey AK (1980) In: Bamford CH, Tipper CFH (eds) Reactions in the solid state, Comprehensive chemical kinetics, vol 22. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Jacobs PWM (1997) J Phys Chem B 101:10086CrossRefGoogle Scholar
  4. 4.
    Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Okhotnikov VB, Yakobson BI, Lyakhov NZ (1983) React Kinet Catal Lett 23:125CrossRefGoogle Scholar
  6. 6.
    Okhotnikov VB, Simakova NA, Kidyarov BI (1989) React Kinet Catal Lett 39:345CrossRefGoogle Scholar
  7. 7.
    Kirdyashkina NA, Okhotnikov VB (1988) React Kinet Catal Lett 36:417CrossRefGoogle Scholar
  8. 8.
    Gaponov YA, Kidyarov BI, Kirdyashkina NA, Lyakhov NZ, Okhotnikov VB (1988) J Therm Anal 33:547CrossRefGoogle Scholar
  9. 9.
    Koga N, Tanaka H (1989) J Phys Chem 93:7793CrossRefGoogle Scholar
  10. 10.
    Galwey AK, Koga N, Tanaka H (1990) J Chem Soc Faraday Trans 86:531CrossRefGoogle Scholar
  11. 11.
    Brown ME, Galwey AK, Li Wan Po A (1992) Thermochim Acta 203:221CrossRefGoogle Scholar
  12. 12.
    Valdivieso F, Bouineau V, Pijolat M, Soustelle M (1997) Solid State Ionics 101–103:1299CrossRefGoogle Scholar
  13. 13.
    Modestov AN, Poplaukhin PV, Lyakhov NZ (2001) J Therm Anal 65:121CrossRefGoogle Scholar
  14. 14.
    Favergeon L, Pijolat M, Valdivieso F, Helbert C (2005) Phys Chem Chem Phys 7:3723CrossRefGoogle Scholar
  15. 15.
    Favergeon L, Valdivieso F, Pijolat M (2006) In: Proceedings NATAS conference, Bowling Green, KY, USAGoogle Scholar
  16. 16.
    Favergeon L (2006) PhD Thesis, Ecole Nationale Supérieure des Mines, Saint-ÉtienneGoogle Scholar
  17. 17.
    Favergeon L, Pijolat M, Thermochimica Acta (submitted)Google Scholar
  18. 18.
    Favergeon L, Pijolat M, Soustelle M, Thermochimica Acta (submitted)Google Scholar
  19. 19.
    Helbert C, PhD thesis, Ecole Nationale Supérieure des Mines, Saint-Étienne, FranceGoogle Scholar
  20. 20.
    Guyon E, Hulin JP, Petit L (1991) Hydrodynamique physique. Ed CNRS, ParisGoogle Scholar
  21. 21.
    Guyon X (1993) Champs aléatoires sur un réseau: modélisations, statistique et applications. Masson, ParisGoogle Scholar
  22. 22.
    Favergeon L, Valdivieso F, Pijolat M, Fisher CAJ, Islam MS, J Phys Chem C (submitted)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Loïc Favergeon
    • 1
    Email author
  • Michèle Pijolat
    • 1
  • Céline Helbert
    • 2
  1. 1.LPMG CNRS UMR 5148 Centre SPINEcole Nationale Supérieure des MinesSaint-Etienne Cedex 02France
  2. 2.Département 3MIEcole Nationale Supérieure des MinesSaint-Etienne Cedex 02France

Personalised recommendations