Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 3338–3350 | Cite as

Accelerated weathering behavior of poly(phenylene ether)-based TPE

  • Samik Gupta
  • Tapan Chandra
  • Arun Sikder
  • Ashok Menon
  • Anil K. BhowmickEmail author
Article

Abstract

In this report accelerated weathering characteristics of a novel poly(phenylene ether) (PPE)-based thermoplastic elastomer (TPE), i.e. a blend of styrene–ethylene–butylenes–styrene (SEBS)/ethylene vinyl acetate (EVA) and PPE-polystyrene (PS), were studied in detail. Exterior and interior accelerated weathering protocols were followed during photooxidative weathering to simulate outdoor and indoor (behind window glass) applications, respectively. Photooxidative degradation was monitored through optical and mechanical property measurements on the injection molded TPE. The effects of titanium dioxide and carbon black at variable loadings were also studied during the photooxidation process. Attempt was made to analyze the surface mechanical properties through nanoscratch/nanoindentation measurement. Using atomic force microscopy, surface roughness and erosion of the exposed material were investigated. Changes in chemical functionalities due to photooxidative degradation were monitored using attenuated total reflection (ATR)-FTIR. Structure property correlation was established through mechanical (surface and bulk), optical, chemical, and morphological analyses.

Keywords

Attenuate Total Reflection Percent Elongation Ethylene Vinyl Acetate Ethylene Vinyl Acetate Color Shift 

Notes

Acknowledgements

The authors acknowledge GE India Technology Centre and IIT Kharagpur for this joint venture. The authors also thank Drs. Susanta Mitra, Radha Kamlakaran, and Sweta Hegde, and Mr. Anirban Ganguly for their effort.

References

  1. 1.
    De SK, Bhowmick AK (eds) (1990) Thermoplastic elastomers from rubber – plastic blends. Ellis Horwood, LondonGoogle Scholar
  2. 2.
    Bhowmick AK, Stephens HL (eds) (2001) Handbook of elastomers, 2nd edn. Marcel Dekker Inc., New YorkGoogle Scholar
  3. 3.
    Holden G, Legge NR, Quirk RP, Schroeder HE (1996) Thermoplastic elastomers: a comprehensive review, 2nd edn. Hanser, MunichGoogle Scholar
  4. 4.
    Bhowmick AK, Gupta S, Biswas A, Preschilla N, Krishnamurthy R (2006) US Patent file number GP2-0448/201393-1: filed on 6th JuneGoogle Scholar
  5. 5.
    Wehrenberg RH (1979) Mater Eng (Cleveland) 90:40Google Scholar
  6. 6.
    Gerhard B, Markus BK (2000) Plast Eur 90:42Google Scholar
  7. 7.
    Reid CG, Cai KG, Tran H, Nobert V (2004) KGK-Kautschuk und Gummi Kanststoffe 57:227Google Scholar
  8. 8.
    Lonnberg V, Starck P (1997) Polym Test 16:133CrossRefGoogle Scholar
  9. 9.
    Nagai Y, Ogawa T, Nishimoto Y, Ohishi F (1999) Polym Degrad Stab 65:217CrossRefGoogle Scholar
  10. 10.
    Jiang-Qing P, Jie Z (1992) Polym Degrad Stab 36:65CrossRefGoogle Scholar
  11. 11.
    Tabankia MH, Philippart JL, Gardette JL (1985) Polym Degrad Stab 12:349CrossRefGoogle Scholar
  12. 12.
    Tabankia MH, Gardette JL (1987) Polym Degrad Stab 19:113CrossRefGoogle Scholar
  13. 13.
    Kennedy JP, Joseph K (1990) Proceedings of the ACS Division of Polymeric Materials Science and Engineering 63:371Google Scholar
  14. 14.
    Chuck ML, Patel S, Farber AJ (1983) Annual Technical Conference—Society of Plastics Engineers 35Google Scholar
  15. 15.
    John CF, Van Fleet V (1992) J Appl Polym Sci 44:1685CrossRefGoogle Scholar
  16. 16.
    Bhowmick AK, Ray S, Shanmugharaj AM, Heslop J, Köppen N, White JR (2006) J Appl Polym Sci 99:150CrossRefGoogle Scholar
  17. 17.
    Bhowmick AK, Heslop J, White JR (2002) J Appl Polym Sci 86:2393CrossRefGoogle Scholar
  18. 18.
    Bhowmick AK, White JR (2002) J Mater Sci 37:5141CrossRefGoogle Scholar
  19. 19.
    Gupta S, Biswas A, Preschilla N, Krishnamurthy R, Bhowmick AK (2007) Rubber Chem Technol 80:642CrossRefGoogle Scholar
  20. 20.
    Pern FJ, Czanderna AW (1992) Sol Energy Mater Sol Cells (The Netherlands) 25:3CrossRefGoogle Scholar
  21. 21.
    Pickett MCR (1990) In: Scott G (ed) Mechanisms of polymer degradation and stabilization, Chapter 5. Elsevier Applied Science, LondonGoogle Scholar
  22. 22.
    Peeling J, Clark DT (1981) J Appl Polym Sci 26:3761CrossRefGoogle Scholar
  23. 23.
    Clodoaldo S, Maria IF (2004) Mater Sci Eng A370:293Google Scholar
  24. 24.
    Scoponi M, Ghiglione C (1997) Makromolecular Chemie 252:237Google Scholar
  25. 25.
    Allen NS, Mckellar JF (1979) Makromolecular Chemie 180:2875CrossRefGoogle Scholar
  26. 26.
    Rivaton A, Morel P (1992) Polym Degrad Stab 35:131CrossRefGoogle Scholar
  27. 27.
    Luengo C, Allen NS, Edge M, Wilkinson A, Parallada MD, Barrio JA, Santa VR (2006) Polym Degrad Stab 91:947CrossRefGoogle Scholar
  28. 28.
    Wypych G (2003) Handbook of material weathering, 3rd edn. Chem Tec Publishing, Toronto and New YorkGoogle Scholar
  29. 29.
    The effect of UV light and weather on plastics and elastomers. Plastics Design Library a division of William Andrew Inc. USA: Norwich, 1994Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Samik Gupta
    • 1
  • Tapan Chandra
    • 1
  • Arun Sikder
    • 1
  • Ashok Menon
    • 1
  • Anil K. Bhowmick
    • 2
    Email author
  1. 1.GE India Technology CentreBangaloreIndia
  2. 2.Rubber Technology CentreIndian Institute of Technology (IIT)KharagpurIndia

Personalised recommendations