Journal of Materials Science

, Volume 43, Issue 14, pp 4749–4752 | Cite as

Melt synthesis of oxide phosphors with K2NiF4 structures: CaLa1−xEuxGaO4

  • Tadashi Ishigaki
  • Kenji Toda
  • Tomoaki Watanabe
  • Naonori Sakamoto
  • Nobuhiro Matsushita
  • Masahiro YoshimuraEmail author
Reactivity of Solids


In order to synthesize compounds of various Perovskite-related structures, we have utilized a novel “melt synthesis technique” for phosphors rather than the conventional solid state reaction techniques. The solid state reactions require multi-step processes of heating/cooling with intermediate grindings to make homogeneous samples. However, for the melt synthesis, it is possible to make a homogeneous sample in a single step within a short period of time (1–60 s) due to the liquid phase reaction in the molten samples, which were melted by strong light radiation in an imaging furnace. In this study, we have prepared a red-phosphor CaLaGaO4:Eu3+ which has a perovskite—related layered K2NiF4 structure. Well-crystallized CaLa1−xEuxGaO4 samples with the K2NiF4 structure have been obtained up to x = 0.25, but there was the formation of an olivine phase when x = 0.5–1.0. The red emission at 618 nm increased with the increasing value of x up to x = 0.25.


Ga2O3 Lattice Energy Solid State Synthesis Complex Perovskite K2NiF4 



The authors are thankful to Mr. K. Seki and Mr. E. Nishimura, Tokyo Institute of Technology and Mr. Hosoume, Niigata University for their helps in the experiments. This work was partially supported by cooperative funds from the Materials and Structures Laboratory, Tokyo Inst. of Tech.


  1. 1.
    Ishigaki T, Seki K, Nishimura E, Watanabe T, Yoshimura M (2006) J Alloy Compd 408–412:1177CrossRefGoogle Scholar
  2. 2.
    Yashima M, Kakihana M, Yoshimura M (1996) Solid State Ionics 86–88:1131CrossRefGoogle Scholar
  3. 3.
    Ishigaki T, Nishimura E, Seki K, Watanabe T, Yoshimura M (2006) J Electroceram 17:885CrossRefGoogle Scholar
  4. 4.
    Yamada T (1986) High Temp High Press 18:377Google Scholar
  5. 5.
    Yamada T, Yoshimura M, Somiya S (1986) J Am Ceram Soc 69:C243CrossRefGoogle Scholar
  6. 6.
    Ueda K, Yamashita T, Nakayashiki K, Goto K, Maeda T, Furui K, Ozaki K, Nakachi Y, Nakamura S, Fujisawa M, Miyazaki T (2006) Jpn J Appl Phys 45(9A):6981CrossRefGoogle Scholar
  7. 7.
    Inaguma Y, Nagasawa D, Katsumata T (2005) Jpn J Appl Phys 44(1B):761CrossRefGoogle Scholar
  8. 8.
    Ronde H, Krol DM, Blasse G (1977) J Electrochem Soc 124(8):1276CrossRefGoogle Scholar
  9. 9.
    Zhou L, Shi J, Gong M (2006) J Rare Earths 24(2):138CrossRefGoogle Scholar
  10. 10.
    Wu J, Yan B (2007) J Alloy Compd 441(1–2):214CrossRefGoogle Scholar
  11. 11.
    ter Heerdt MLH, van der Kolk E, Yen WM, Srivastava AM (2002) J Lumin 100(1–4):107CrossRefGoogle Scholar
  12. 12.
    Li Z, Li G, Liao F, Lin J (2003) J Solid State Chem 172:59CrossRefGoogle Scholar
  13. 13.
    Kudo A, Sakata T (1995) J Phys Chem 99:15963CrossRefGoogle Scholar
  14. 14.
    Honma T, Toda K, Zuo-Guang Ye, Sato M (1998) J Phys Chem Solids 59:1187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tadashi Ishigaki
    • 1
    • 2
  • Kenji Toda
    • 3
  • Tomoaki Watanabe
    • 1
  • Naonori Sakamoto
    • 1
  • Nobuhiro Matsushita
    • 1
  • Masahiro Yoshimura
    • 1
    Email author
  1. 1.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan
  2. 2.Center for Transdisciplinary ResearchNiigata UniversityNiigataJapan
  3. 3.Center for Transdisciplinary ResearchNiigata UniversityNiigataJapan

Personalised recommendations