Journal of Materials Science

, Volume 43, Issue 6, pp 2066–2068 | Cite as

Dynamic recrystallization behavior during compressive deformation in Mg–Al–Ca–RE alloy

  • Masataka HakamadaEmail author
  • Akira Watazu
  • Naobumi Saito
  • Hajime Iwasaki

Mg alloys have a high potential for reduction in CO2 emission because of their high specific strength and stiffness [1]. For more applications of Mg alloys, it is desirable to improve creep resistance because Mg alloys often show poor creep resistance. It has been reported that Mg alloys containing Ca showed high creep resistance and elevated temperature strength [2, 3]. Recently, Bohlen et al. [4] suggested that dynamic recrystallization (DRX) occurred due to particle-stimulated nucleation (PSN). Recrystallization due to PSN tends to occur in metals containing large-sized particles more than 1 μm [5]. Insoluble second phases such as Al2Ca and Mg2Ca are present in Mg–Al–Ca system alloys, so that DRX is expected to be enhanced due to the PSN mechanism in Mg–Al–Ca system alloys. Several studies [6, 7, 8] showed that DRX occurs during hot deformation in Mg–Al–Ca system alloys. However, DRX in Mg–Ca alloys has not been understood sufficiently. In the present paper, compression tests are...


Creep Resistance True Strain Rate Size Exponent Constant True Strain Rate Double Twinning 


  1. 1.
    Hakamada M, Furuta T, Chino Y, Chen Y, Kusuda H, Mabuchi M (2007) Energy 32:1352CrossRefGoogle Scholar
  2. 2.
    Nimoniya R, Ojiro T, Kubota K (1995) Acta Metall Mater 43:669CrossRefGoogle Scholar
  3. 3.
    Luo AA, Balogh MP, Powell BR (2002) Metall Mater Trans 33A:567CrossRefGoogle Scholar
  4. 4.
    Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) Acta Mater 55:2101CrossRefGoogle Scholar
  5. 5.
    Humphreys FJ (1991) Mater Sci Eng A135:267CrossRefGoogle Scholar
  6. 6.
    Yim CD, You BS, Lee JS, Kim WC (2004) Mater Trans 45:3018CrossRefGoogle Scholar
  7. 7.
    Watanabe H, Yamaguchi M, Takigawa Y, Higashi K (2007) Mater Sci Eng A454–A455:384CrossRefGoogle Scholar
  8. 8.
    Chino Y, Nakaura Y, Ohori K, Kamiya A, Mabuchi M (2007) Mater Sci Eng A452–A453:31CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Zeng X, Lu C, Ding W (2006) Mater Sci Eng A428:91CrossRefGoogle Scholar
  10. 10.
    Mabuchi M, Kubota K, Higashi K (1995) Mater Trans JIM 36:1249CrossRefGoogle Scholar
  11. 11.
    Watanabe H, Tsutsui H, Mukai T, Ishikawa K, Okanda Y, Kohzu M, Higashi K (2001) Mater Trans 42:1200CrossRefGoogle Scholar
  12. 12.
    Mabuchi M, Chino Y, Iwasaki H, Aizawa T, Higashi K (2001) Mater Trans 42:1182CrossRefGoogle Scholar
  13. 13.
    Kumar NVR, Blandin JJ, Desrayaud C, Montheillet F, Suéry M (2003) Mater Sci Eng A 359:150CrossRefGoogle Scholar
  14. 14.
    Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, OxfordGoogle Scholar
  15. 15.
    Ding H, Liu L, Kamado S, Ding W, Kojima Y (2007) Mater Sci Eng A452–A453:503CrossRefGoogle Scholar
  16. 16.
    Yang X, Miura H, Sakai T (2003) Mater Trans 44:197CrossRefGoogle Scholar
  17. 17.
    Myshlyaev MM, McQueen HJ, Mwembela A, Konopleva E (2002) Mater Sci Eng A337:121CrossRefGoogle Scholar
  18. 18.
    Sitdikov O, Kaibyshev R (2001) Mater Trans 42:1928CrossRefGoogle Scholar
  19. 19.
    Meyers MA, Vohringer O, Lubarda VA (2001) Acta Mater 49:4025CrossRefGoogle Scholar
  20. 20.
    Gourdet S, Montheillet F (2003) Acta Mater 51:2685CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Masataka Hakamada
    • 1
    Email author
  • Akira Watazu
    • 1
  • Naobumi Saito
    • 1
  • Hajime Iwasaki
    • 2
  1. 1.Materials Research Institute for Sustainable DevelopmentNational Institute of Advanced Industrial Science and TechnologyMoriyama-kuJapan
  2. 2.The Materials Process Technology CenterMinato-kuJapan

Personalised recommendations