Journal of Materials Science

, Volume 43, Issue 6, pp 1920–1925 | Cite as

Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites

  • Narayan Chandra Das
  • Spandan Maiti


Single-walled carbon nanotube (SWCNT) and ethylene vinyl acetate (EVA) composites were synthesized in an internal mixer by melt mixing. The electrical conductivity as well as electromagnetic interference (EMI) shielding effectiveness (SE) over the X-band (8–12 GHz) and microwave (200–2,000 MHz) frequency ranges of these composites were investigated. It was observed that the electrical conductivity of composites increases with increasing SWCNT loading. A percolation threshold of about 3.5 wt.% was obtained and the electrical conductivity of EVA was increased by ten orders of magnitude, from 10−14 to 10−4 Ω−1 cm−1. The effect of sample thickness on SE was investigated. The correlation between SE and conductivity of the composites is discussed. The experimental data showed that the SE of the composites containing higher carbon nanotube loadings (above 10 wt.%) could be used as an EMI shielding material and lower SWCNT loadings could be used for the dissipation of electrostatic charge.


Percolation Threshold Vinyl Acetate Return Loss Shield Effectiveness Ethylene Vinyl Acetate 


  1. 1.
    Blanchet GB, Fincher CR, Gao F (2003) Appl Phys Lett 82:1290CrossRefGoogle Scholar
  2. 2.
    Virtanen E, Laakso J, Ruohonon H, Väkiparta K, Järvinen H, Jussila M, Passiniemi P, Osterholm JE (1997) Synth Met 84:113CrossRefGoogle Scholar
  3. 3.
    Anand L, Palaniappan S, Sathyarayana DN (1998) Prog Polym Sci 23:993CrossRefGoogle Scholar
  4. 4.
    Wu CY, Benatar A (1997) Polym Eng Sci 37:738CrossRefGoogle Scholar
  5. 5.
    Ezquerra TA, Kremer F, Mohammadi M, Ruhe J, Wegner G, Wessling B (1989) Synth Met 28:83CrossRefGoogle Scholar
  6. 6.
    Das NC, Chaki TK, Khastgir D, Chakraborty A (2001) Adv Polym Tech 20:226CrossRefGoogle Scholar
  7. 7.
    Radford DWJ (1994) Adv Mater 26(1):45Google Scholar
  8. 8.
    Das NC, Yamazaki S, Hikosaka M, Chaki TK, Khastgir D, Chakraborty A (2005) Polym Int 54:256CrossRefGoogle Scholar
  9. 9.
    Kim MS, Kim HK, Byun SW, Jeong SH, Hong YK, Joo JS, Song KT, Kim JK, Lee CJ, Lee Y (2002) Synth Met 126:233CrossRefGoogle Scholar
  10. 10.
    Chung DDL (2001) Carbon 39:279CrossRefGoogle Scholar
  11. 11.
    Das NC, Chaki TK, Khastgir D, Chakraborty A (2001) J Appl Polym Sci 80:1601CrossRefGoogle Scholar
  12. 12.
    Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon 42:1153CrossRefGoogle Scholar
  13. 13.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  14. 14.
    Kocia M, Kasumov AY, Gue´ron S, Reulet B, Khodos II, Gorbatov YB, Volkov VT, Vaccarini L, Bouchiat H (2001) Phys Rev Lett 86:2416CrossRefGoogle Scholar
  15. 15.
    Rinzler AG, Hafner JH, Nikolaev P, Lou L, Kim SG, Toma´nek D, Nordlander P, Colbert DT, Smalley RE (1995) Science 269:1550CrossRefGoogle Scholar
  16. 16.
    Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Nature 386:474CrossRefGoogle Scholar
  17. 17.
    Dillion AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377CrossRefGoogle Scholar
  18. 18.
    Berber S, Kwon YK, Toma´nek D (2000) Phys Rev Lett 84:4613CrossRefGoogle Scholar
  19. 19.
    Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929CrossRefGoogle Scholar
  20. 20.
    Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Nano Lett 2:285CrossRefGoogle Scholar
  21. 21.
    Breton Y, Desarmot G, Salvetat JP, Depeux S, Sinturel C, Beguin F, Bonnamy S (2004) Carbon 42:1027CrossRefGoogle Scholar
  22. 22.
    Barraza HJ, Pompeo F, O’Rear EA, Resasco DE (2002) Nano Lett 2:797CrossRefGoogle Scholar
  23. 23.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Nano Lett 5:2131CrossRefGoogle Scholar
  24. 24.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) J Nanosci Nanotech 5:927CrossRefGoogle Scholar
  25. 25.
    Ramasubramaniam R, Chen J, Liu H (2003) Appl Phys Lett 83(14):2928CrossRefGoogle Scholar
  26. 26.
    Bhattacharyya AR, Srekumar TV, Liu T, Kumar S, Ericsonb LM, Hauge RH, Smalley RE (2003) Polymer 44:2373CrossRefGoogle Scholar
  27. 27.
    Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Polymer 45:739CrossRefGoogle Scholar
  28. 28.
    Song YS, Youn JR (2005) Carbon 43:1378CrossRefGoogle Scholar
  29. 29.
    Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Carbon 43:23CrossRefGoogle Scholar
  30. 30.
    Grunlan JC, Mehrabi AR, Bannon M V, Bahr JL (2004) Adv Mater 16:150CrossRefGoogle Scholar
  31. 31.
    Brying MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17:1186CrossRefGoogle Scholar
  32. 32.
    Wang L, Dang ZM. (2005) Appl Phys Lett 87:042903CrossRefGoogle Scholar
  33. 33.
    Dang ZM, Nan CW, Xie D, Zhang YH, Tjong SC (2004) Appl Phys Lett 85:97CrossRefGoogle Scholar
  34. 34.
    Kim HM, Kim K, Yee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ (2004) Appl Phys Lett 84(4):589CrossRefGoogle Scholar
  35. 35.
    Das NC, Chaki TK, Khastgir D (2002) Kautschuk Gummi Kunststoffe 55(6):300Google Scholar
  36. 36.
    Zhang QH, Chen QH (2004) J Mater Sci 39:175Google Scholar
  37. 37.
    Das NC, Chaki TK, Khastgir D (2002) J Polym Eng 22(2):115CrossRefGoogle Scholar
  38. 38.
    Lozano K, Bonilla-Rios J, Barrea EV (2001) J Polym Sci 80:1162Google Scholar
  39. 39.
    Balber I, Binenbaum N, Wagner N (1984) Phys Rev Lett 52:1465CrossRefGoogle Scholar
  40. 40.
    Zhang A, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Carbon 44:778CrossRefGoogle Scholar
  41. 41.
    Ott HW (1998) Noise reduction techniques in electronic system, 2nd edn. Wiley, New YorkGoogle Scholar
  42. 42.
    Joo J, Epstein AJ (1994) Appl Phys Lett 65:2278CrossRefGoogle Scholar
  43. 43.
    Das NC, Chaki TK, Khastgir D, Chakraborty A (2000) Composites A 31:1069CrossRefGoogle Scholar
  44. 44.
    Jou WS, Cheng HZ, Hsu CF (2006) J Electron Mater 35(3):462CrossRefGoogle Scholar
  45. 45.
    Joo J, Lee YC (2000) J Appl Phys 88:513CrossRefGoogle Scholar
  46. 46.
    Lu G, Li X, Jiang H (1996) Compos Sci Technol 56:193CrossRefGoogle Scholar
  47. 47.
    Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Guo T, Chen Y (2007) Carbon 45:821CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mechanical and Materials EngineeringState University of New YorkBinghamtonUSA
  2. 2.Department of Mechanical Engineering-Engineering MechanicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations