Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4383–4390 | Cite as

Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites

  • N. ChawlaEmail author
  • D. R. P. Singh
  • Y.-L. Shen
  • G. Tang
  • K. K. Chawla
Commonality of Phenomena in Composite Materials

Abstract

Composite laminates on the nanoscale have unique properties, such as high strength, high wear resistance, and biocompatibility. In this paper we report on the nanoindentation behavior of a model metal–ceramic nanolaminate consisting of alternating layers of aluminum and silicon carbide (Al/SiC) processed by PVD on a Si substrate. Composites with different layer thicknesses were fabricated and the effect of layer thickness on Young’s modulus and hardness was quantified. The effect of indentation depth on modulus and hardness was studied. The damage that took place during nanoindentation was examined by cross-sectioning the samples by focused ion beam (FIB) technique and imaging the surface using scanning electron microscopy (SEM). Finite element modeling (FEM) of nanoindentation of nanolaminates was conducted. The damage patterns observed in experiments were qualitatively supported by the numerical simulations.

Keywords

Indentation Depth High Tensile Stress Indentation Process Individual Layer Thickness Indentation Displacement 

Notes

Acknowledgements

The authors are grateful for financial support for this research from the National Science Foundation (DMR-0504781, Dr. H. D. Chopra, Program Manager). We acknowledge the use of processing and microscopy facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University.

References

  1. 1.
    Lesuer DR, Syn CK, Sherby OD, Wadsworth J, Lewandowski JJ, Hunt WH (1996) Int Mater Rev 41:169CrossRefGoogle Scholar
  2. 2.
    Huang H, Spaepen F (2000) Acta Mater 48:3261CrossRefGoogle Scholar
  3. 3.
    Daniel C, Lasagni A, Mucklich F (2004) Surf Coat Technol 180–181:478CrossRefGoogle Scholar
  4. 4.
    Schumann J, Brückner W, Heinrich A (1993) Thin Solid Films 228:44CrossRefGoogle Scholar
  5. 5.
    Alpas AT, Embury JD, Hardwick DA, Springer RW (1990) J Mater Sci 25:1603. doi: https://doi.org/10.1007/BF01045357 CrossRefGoogle Scholar
  6. 6.
    Mearini GT, Hoffman RW (1993) J Electron Mater 22(6):623CrossRefGoogle Scholar
  7. 7.
    Chou TC, Nieh TG, McAdams SD, Pharr GM, Oliver WC (1992) J Mater Res 7(10):2774CrossRefGoogle Scholar
  8. 8.
    Liu CH, Li W-Z, Li H-D (1996) J Mater Res 11(9):2231CrossRefGoogle Scholar
  9. 9.
    Deng X, Chawla N, Chawla K, Koopman M, Chu JP (2005) Adv Eng Mater 7:1099CrossRefGoogle Scholar
  10. 10.
    Deng X, Cleveland C, Karcher T, Koopman M, Chawla N, Chawla KK (2005) J Mater Eng Perform 14:417CrossRefGoogle Scholar
  11. 11.
    Barshilia HC, Prakash MS, Poojari A, Rajan KS (2004) Thin Solid Films 460:133CrossRefGoogle Scholar
  12. 12.
    Kuo D-H, Tzeng K-H (2004) Thin Solid Films 460:327CrossRefGoogle Scholar
  13. 13.
    Saha R, Nix W (2002) Acta Mater 50:23CrossRefGoogle Scholar
  14. 14.
    Li X, Bhushan B (2002) Mater Charact 48:11CrossRefGoogle Scholar
  15. 15.
    Fischer-Cripps A (2000) Vacuum 58:569CrossRefGoogle Scholar
  16. 16.
    Nix WD (1997) Mater Sci Eng A234–A236:37CrossRefGoogle Scholar
  17. 17.
    Tsui TY, Pharr GM (1999) J Mater Res 14:292CrossRefGoogle Scholar
  18. 18.
    Misra A, Kung H (2001) Adv Eng Mater 3:217CrossRefGoogle Scholar
  19. 19.
    Dresher WH (1969) J Met 21:17Google Scholar
  20. 20.
    Chawla KK (1998) Fibrous materials. Cambridge University Press, Cambridge, p 24CrossRefGoogle Scholar
  21. 21.
    Fischer-Cripps AC (2002) Nanoindentation. Springer, New York, p 20Google Scholar
  22. 22.
    Lide DR (1995) Handbook of chemistry and physics, 76th edn. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Bucaille JL, Stauss S, Schwaller P, Michler J (2004) Thin Solid Films 447:239CrossRefGoogle Scholar
  24. 24.
    ABAQUS Theory Manual, Version 6.5. Dassault Systemes Simulia Corp., Providence (2006)Google Scholar
  25. 25.
    Tan XH, Shen Y-L (2005) Compos Sci Technol 65:1639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • N. Chawla
    • 1
    Email author
  • D. R. P. Singh
    • 1
  • Y.-L. Shen
    • 2
  • G. Tang
    • 2
  • K. K. Chawla
    • 3
  1. 1.School of Materials, Fulton School of EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Mechanical EngineeringUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations