Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 2006–2011 | Cite as

Phase orientation, interface structure, and properties of aged Cu-6 wt.% Ag

  • J. B. Liu
  • L. MengEmail author
Article

Abstract

The crystallographic orientation and interface structure of Ag precipitates were investigated for aged Cu-6 wt.% Ag. The hardness and resistivity were determined for the aged alloy for different times. Ag secondary particles form in the Cu matrix from a discontinuous precipitation and the precipitated cells extend with the increase in aging time. There are the cube-on-cube relationship and semi-coherent interface between the Ag precipitate and the Cu matrix. Some dislocations are regularly arranged at the interface. The improvements of the hardness and conductivity can mainly be attributed to the increase in interface strengthening and the decrease in solute scattering in the Cu matrix during aging treatment. The high lattice-matching level and regular dislocation arrangement at the interface produce high strain resistance and low electron scattering.

Keywords

Aging Time Orientation Relationship Aging Treatment Precipitation Reaction Filamentary Structure 

Notes

Acknowledgements

Dr Y.W. Zeng is thanked for helpful discussions about HRTEM observations. The project is financially supported from the National Natural Science Foundation of China (Grant No. 50671092).

References

  1. 1.
    Hong SI, Hill MA (1998) Acta Mater 46:4111CrossRefGoogle Scholar
  2. 2.
    Benghalem A, Morris DG (1997) Acta Mater 45:397CrossRefGoogle Scholar
  3. 3.
    Hong SI, Hill MA (1999) Mater Sci Eng A 264:151CrossRefGoogle Scholar
  4. 4.
    Frings PH, Bockstal LV (1995) Physica B 211:73CrossRefGoogle Scholar
  5. 5.
    Sakai Y, Schneider-Muntau HJ (1997) Acta Mater 45:1017CrossRefGoogle Scholar
  6. 6.
    Wood JT, Embury JD, Ashby MF (1997) Acta Mater 45:1099CrossRefGoogle Scholar
  7. 7.
    Han K, Vasquez AA, Xin Y, Kalu PN (2003) Acta Mater 51:767CrossRefGoogle Scholar
  8. 8.
    Han K, Embury JD, Sims JR, Campbell LJ, Schneider-Muntau HJ, Pantsyrnyi VI, Shikov A, Nikulin A, Vorobieva A (1999) Mater Sci Eng A 267:99CrossRefGoogle Scholar
  9. 9.
    Morris DG, Benghalem A, Morris-Munoz MA (1999) Scripta Mater 41:1123CrossRefGoogle Scholar
  10. 10.
    Zhang L, Meng L (2005) Scripta Mater 52:1187CrossRefGoogle Scholar
  11. 11.
    Sakai Y, Inoue K, Asano T, Wada H, Maeda H (1991) Appl Phys Lett 59:2965CrossRefGoogle Scholar
  12. 12.
    Liu JB, Meng L, Zeng YW (2006) Mater Sci Eng A 435–436:237CrossRefGoogle Scholar
  13. 13.
    Han K, Embury JD, Petrovic JJ, Weatherly GC (1998) Acta Mater 46:4691CrossRefGoogle Scholar
  14. 14.
    Rao G, Howe JM, Wynblatt P (1994) Scripta Metall Mater 30:731CrossRefGoogle Scholar
  15. 15.
    Dupouy F, Snoeck E, Casanove MJ, Roucau C, Peyrade JP, Askenazy S (1996) Scripta Mater 34:1067CrossRefGoogle Scholar
  16. 16.
    Snoeck E, Lecouturier F, Thilly L, Casanove MJ, Rakoto H, Coffe G, Askenazy S, Peyrade JP, Roucau C, Pantsyrny V, Shikov A, Nikulin A (1998) Scripta Mater 38:1643CrossRefGoogle Scholar
  17. 17.
    Leprince-Wang Y, Han K, Huang Y, Yu-Zhan K (2003) Mater Sci Eng A 351:214CrossRefGoogle Scholar
  18. 18.
    Lee KH, Hong SI (2004) Philos Mag Lett 84:515CrossRefGoogle Scholar
  19. 19.
    Lee KH, Hong SI (2003) J Mater Res 18:2194CrossRefGoogle Scholar
  20. 20.
    Hirsch P, Howe A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals. Krieger Publishing Company, NewYork, p 357Google Scholar
  21. 21.
    Bacher P, Wynblatt P, Foiles SM (1991) Acta Metall Mater 39:2681CrossRefGoogle Scholar
  22. 22.
    Watanabe C, Monzen R, Nagayoshi H, Onaka S (2006) Philos Mag Lett 86:65CrossRefGoogle Scholar
  23. 23.
    Rao G, Zhang DB, Wynblatt P (1993) Scripta Metall Mater 28:459CrossRefGoogle Scholar
  24. 24.
    Grünberger W, Heilmaier M, Schultz L (2002) Z Metallkd 93:58CrossRefGoogle Scholar
  25. 25.
    Lee SY, Nash P (1993) J Mater Sci 28:1957CrossRefGoogle Scholar
  26. 26.
    Batra IS, Dey GK, Kulkarni UD, Banerjee S (2001) J Nucl Mater 299:91CrossRefGoogle Scholar
  27. 27.
    Suzuki S, Shibutani N, Mimura K, Isshiki M, Waseda Y (2006) J Alloys Compd 417:116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations