Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 2069–2071 | Cite as

Effect of dynamic precursor gas pressure on growth behavior of amorphous Si–C–O nanorods by electron beam-induced deposition

  • Wei ZhangEmail author
  • Massayuki Shimojo
  • Kazuo Furuya
Letter

Electron beam-induced deposition (EBID) is a versatile maskless technology [1] to fabricate submicron- or nanometerscale structures from various elements in scanning electron microscope [2] as well as transmission electron microscope [3] and scanning transmission electron microscope [4]. During EBID, adsorbed precursor gas molecules on a substrate surface are irradiated and dissociated by an electron beam. This induces a chemical reaction that results in the deposition of non-volatile materials. If the electron beam is not moved relative to the substrate, a nanodot can be formed; electron beam scanning can produce nanorod within a suitable precursor gas pressure. Nanofabrication by using EBID is hence exceeding in terms of controlling the position and morphology of low dimensional functional nanostructures, e.g., carbon nanotube and ferromagnetic FePt alloy nanorods [5, 6]. It is very necessary to probe the effects of various deposition parameters on the target deposits, e.g.,...

Keywords

Electron Beam FePt Holey Carbon Film Adsorbed Precursor Variable Leak Valve 

References

  1. 1.
    Randolph SJ, Fowlkes JD, Rack PD (2006) Crit Rev Solid State Mater Sci 31:55CrossRefGoogle Scholar
  2. 2.
    Utke I, Friedli V, Fahlbusch S, Hoffmann S, Hoffmann P, Michler J (2006) Adv Eng Mater 8:155CrossRefGoogle Scholar
  3. 3.
    Xie GQ, Song MH, Mitsuishi K, Furuya K (2006) J Mater Sci 41:2567CrossRefGoogle Scholar
  4. 4.
    Van Dorp WF, Van Somern B, Hagen CW, Kruit P (2005) Nano Lett 5:1303CrossRefGoogle Scholar
  5. 5.
    Ichihashi T, Fujita JI, Ishida M, Ochiai Y (2004) Phys Rev Lett 92:215702CrossRefGoogle Scholar
  6. 6.
    Che RC, Takeguchi M, Shimojo M, Zhang W, Furuya K (2005) Appl Phys Lett 87:223109CrossRefGoogle Scholar
  7. 7.
    White WB, Rykaczewski K, Fedorov AG (2006) Phys Rev Lett 97:086101CrossRefGoogle Scholar
  8. 8.
    Choi YR, Rack PD, Randolph SJ, Smith DA, Joy DC (2006) Scanning 28:311CrossRefGoogle Scholar
  9. 9.
    Beaulieu D, Ding Y, Wang ZL, Lackey WJ (2005) J Vac Sci Technol 23B:2151CrossRefGoogle Scholar
  10. 10.
    Jeanguillaume C, Trebbia P, Colliex C (1978) Ultramicroscopy 3:237CrossRefGoogle Scholar
  11. 11.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan
  2. 2.Advanced Science Research LaboratorySaitama Institute of TechnologyOkabe-machiJapan

Personalised recommendations