Journal of Materials Science

, Volume 43, Issue 6, pp 1987–1996 | Cite as

Influence of weldlines on tensile properties of hybrid acrylonitrile butadiene styrene (ABS) composites filled with short glass fibres (GF) and glass beads (GB)

  • S. HashemiEmail author
  • O. O. Olumide
  • M. O. Newaz


The present study investigated the effect of weldlines on tensile strength and modulus of injection moulded ABS polymer reinforced with both short fibres (GF) and spherical glass beads (GB). It was observed that tensile strength and modulus of ABS/GF/GB hybrids increased with increasing the concentration total of glass in the hybrid as well as the concentration of glass fibres in the hybrid (χGF). Results indicated that tensile strength and modulus of ABS/GF/GB hybrids obey the rule-of-mixtures. The presence of weldlines had a negative effect on tensile properties of ABS/GF/GB hybrids. Although tensile strength and modulus of ABS/GF/GB hybrids were reduced in the presence of weldlines, nonetheless both increased with increasing the total concentration of the glass particles and χGF. The observed linearity of weldline strength and modulus with χGF indicated that these properties like their unweld counterparts can be expressed by simple rule-of-mixtures. It was noted also that weldline integrity factor for tensile modulus and strength decreased with increasing χGF and the total concentration of the glass particles in the hybrids. Weldline integrity values indicated that hybrid tensile strength was more affected by the weldlines than hybrid modulus.


Tensile Strength Glass Fibre Glass Bead Short Fibre Tensile Modulus 


  1. 1.
    Hashemi S, Gilbride MT, Hodgkinson JM (1996) J Mater Sci 32:5017CrossRefGoogle Scholar
  2. 2.
    Din KJ, Hashemi S (1997) J Mater Sci 32:375CrossRefGoogle Scholar
  3. 3.
    Chrysostomou A, Hashemi S (1998) J Mater Sci 33:1165CrossRefGoogle Scholar
  4. 4.
    Chrysostomou A, Hashemi S (1998) J Mater Sci 33:4491CrossRefGoogle Scholar
  5. 5.
    Nabi ZU, Hashemi S (1998) J Mater Sci 33:2985CrossRefGoogle Scholar
  6. 6.
    Hashemi S (2002) Plast Rubber Compos 31:1CrossRefGoogle Scholar
  7. 7.
    Hashemi S, Lepessova Y (2007) J Mater Sci 42:2652CrossRefGoogle Scholar
  8. 8.
    Necar M, Irfan-ul-Haq, Khan Z (2003) J Mater Process Technol 142:247CrossRefGoogle Scholar
  9. 9.
    Fu SY, Lauke B, Mader E, Yue CY, Hu X (2000) Compos Part A 31:1117CrossRefGoogle Scholar
  10. 10.
    Fisa B (1985) Polym Composite 6:232CrossRefGoogle Scholar
  11. 11.
    Thomason JL (2002) Compos Sci Technol 62:1455CrossRefGoogle Scholar
  12. 12.
    Thomason JL (2001) Compos Sci Technol 61:2007CrossRefGoogle Scholar
  13. 13.
    Yilmazar U (1992) Compos Sci Technol 44:119CrossRefGoogle Scholar
  14. 14.
    Hashemi S, Elmes P, Sandford S (1997) Polym Eng Sci 37:45CrossRefGoogle Scholar
  15. 15.
    Phillips LN (1976) Composites 7:7CrossRefGoogle Scholar
  16. 16.
    Debondue E, Foumier J-E, Lacrampe MF, Krawczak (2004) J Polym Polym Compos 12:373Google Scholar
  17. 17.
    Sanschagrin B, Gauvin R, Fisa B,Vu-Khanh T (1990) J Reinf Plast Comp 8:194CrossRefGoogle Scholar
  18. 18.
    Meddad A, Fisa B (1995) Polym Eng Sci 35:893CrossRefGoogle Scholar
  19. 19.
    Akay M, Barkley D (1993) Plast Rubber Compos 20:137Google Scholar
  20. 20.
    Nadkarni VM, Ayodhya SR (1993) Polym Eng Sci 33:358CrossRefGoogle Scholar
  21. 21.
    Cox H L (1952) Br Appl Phys 3:72CrossRefGoogle Scholar
  22. 22.
    Krenchel H (1964) Akademisk. Forlag, CopenhagenGoogle Scholar
  23. 23.
    Einstein A (1906) Ann der Phys 19:289CrossRefGoogle Scholar
  24. 24.
    Kerner EH (1956) Proc Phys Soc 69B:908Google Scholar
  25. 25.
    Leidner J, Woodhams RT (1974) J Appl Polym Sci 18:1639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.London Metropolitan Polymer CentreLondon Metropolitan UniversityLondonUK

Personalised recommendations