Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 2012–2017 | Cite as

Effect of montmorillonite modification on mechanical properties of vulcanized natural rubber composites

  • Jana HrachováEmail author
  • Peter Komadel
  • Ivan Chodák
Article

Abstract

Natural rubber-clay composites were prepared by direct polymer melt intercalation. Ca-montmorillonite Jelšový Potok (JP; Slovakia) and Na-montmorillonite Kunipia-F (KU; Japan) were ion exchanged with octadecyltrimethylammonium (ODTMA) bromide and were used as aluminosilicate fillers. Silica Ultrasil VN3 was used in amount of 15 phr as conventional filler. The effect of clay or organoclay loading from 1 up to 10 phr on the mechanical properties was evaluated from the tensile tests (stress at break, strain at break and modulus M100). Organic modification resulted in an increase of toluene uptake degree for both fillers. While an addition of unmodified KU had no effect on tensile strength and deformation at break, a reinforcing effect was observed for the mixture containing 10 phr of unmodified JP. Both ODTMA modified fillers (KU and JP) exhibited substantial increase in tensile strength and deformation at break; JP proved to be more effective compared to KU also if modified with ODTMA. The highest stress at break and strain at break values for natural rubber composites were obtained with 15 phr of SiO2 and 10 phr of montmorillonite; however, the effect of exchangeable cation was minor.

Keywords

Natural Rubber Vulcanization EPDM Interlayer Distance Modify Filler 

Notes

Acknowledgements

The authors are grateful to the Slovak Research and Development Agency (grant No APVV-51-050505) for supporting this research.

References

  1. 1.
    Alexandre M, Dubois P (2000) Mater Sci Eng R28:1CrossRefGoogle Scholar
  2. 2.
    Mohammad A, Simon GP (2006) In: Mai Y-W, Yu ZZ (eds) Polymer nanocomposites, chap 12. CRC Press, Boca Raton, p 297Google Scholar
  3. 3.
    Sadhu S, Bhowmick AK (2005) J Mater Sci 40:1633CrossRefGoogle Scholar
  4. 4.
    Kader MA, Kim K, Lee Y-S, Nah C (2006) J Mater Sci 41:7341CrossRefGoogle Scholar
  5. 5.
    Cataldo F (2007) Macromol Symp 247:67CrossRefGoogle Scholar
  6. 6.
    Zhang L, Wang Y, Wang Y, Sui Y, Yu D (2000) J Appl Polym Sci 78:1873CrossRefGoogle Scholar
  7. 7.
    Arroyo M, Lopez-Machado MA, Herrero B (2003) Polymer 44:2447CrossRefGoogle Scholar
  8. 8.
    Nah C, Ryu HJ, Han SH, Rhee JM, Lee M-H (2001) Polym Int 50:1265CrossRefGoogle Scholar
  9. 9.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  10. 10.
    Karger-Kocsis J, Wu CM (2004) Polym Eng Sci 44:1083CrossRefGoogle Scholar
  11. 11.
    Cataldo F (2005) Macromol Symp 228:91CrossRefGoogle Scholar
  12. 12.
    López-Manchado MA, Herrero B, Arroyo M (2003) Polym Int 52:1070CrossRefGoogle Scholar
  13. 13.
    Varghese S, Karger-Kocsis J (2003) Polymer 44:4921CrossRefGoogle Scholar
  14. 14.
    Zheng H, Zhang Y, Peng Z, Zhang Y (2004) Polym Test 23:217CrossRefGoogle Scholar
  15. 15.
    Gatos KG, Thomann R, Karger-Kocsis J (2004) Polym Int 53:1191CrossRefGoogle Scholar
  16. 16.
    Sadhu S, Bhowmick AK (2004) J Appl Polym Sci 92:698CrossRefGoogle Scholar
  17. 17.
    Wang S, Long C, Wang X, Li Q, Qi Z (1998) J Appl Polym Sci 69:1557CrossRefGoogle Scholar
  18. 18.
    Wang Y, Zhang L, Tang C, Yu D (2000) J Appl Polym Sci 78:1879CrossRefGoogle Scholar
  19. 19.
    Wu YP, Jia Q-X, Yu D-S, Zhang L-Q (2003) J Appl Polym Sci 89:3855CrossRefGoogle Scholar
  20. 20.
    Hrachová J, Chodák I, Komadel P (2007) Chem Papers (submitted)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Inorganic ChemistrySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations