Journal of Materials Science

, Volume 43, Issue 6, pp 1979–1986 | Cite as

Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti–Si oxide structures

  • Lu-Yan Wang
  • Yan-Ping SunEmail author
  • Bing-She Xu


Three types of Ti–Si binary oxides have been prepared by sol-gel processes. The effects of SiO2 addition and annealing temperature on the grain size, phase transition, dispersion, and microstructure of nanocrystalline (nc) TiO2 anatase in the three Ti–Si oxide structures have been comparatively investigated by X-ray diffraction (XRD) analysis and high-resolution transmission electron microscopy (HRTEM). The grain growth and anatase-rutile transformation (ART) of ncTiO2 were found to depend not only on the SiO2 content and annealing temperature, but also on the composite structure. Both the grain growth and the ART of ncTiO2 proved to be significantly inhibited with increasing SiO2 content for all of the Ti–Si samples, but the structure of intimately mixed Ti–Si binary oxide showed the best inhibiting ability under high-temperature annealing. This result might be attributed to variations in the large lattice strains in ncTiO2, which were mainly induced by the substitution of Ti4+ by Si4+. Plausible mechanisms for the grain growth and ART of ncTiO2 are proposed. To inhibit the grain growth of ncTiO2, the addition of 10 and 30 mol% SiO2 proved to be optimal for Ti–Si samples annealed at 773 K and 1273 K, respectively.


Lattice Strain SiO2 Content Pure TiO2 Increase Annealing Temperature TBOT 



Financial support from the Natural Science Foundation of China (grant numbers 20476067 and 90306014) is gratefully acknowledged. The authors would like to thank the staff of the Key Laboratory of Interfaces and Engineering in Advanced Materials and the Key Laboratory of Coal Science and Technology, for their help in performing the HRTEM and XRD measurements.


  1. 1.
    Hu C, Tang YC, Yu JC, Wong PK (2003) Appl Catal B 40:131CrossRefGoogle Scholar
  2. 2.
    Muhammad SV, Keiichi T (2003) Water Res 37:3992CrossRefGoogle Scholar
  3. 3.
    Ismail AA, Ibrahim IA, Ahmed MS, Mohamed RM, Eishall HJ (2004) Photochem Photobiol A 163:445CrossRefGoogle Scholar
  4. 4.
    Uchiyama H, Suzuki K, Oaki Y, Imai H (2005) Mater Sci Eng B 123:248CrossRefGoogle Scholar
  5. 5.
    Xu YM, Zheng W, Liu WP (1999) J Photochem Photobiol A 122:57CrossRefGoogle Scholar
  6. 6.
    Cheng SF, Tsai SJ, Lee YF (1995) Catal Today 26:87CrossRefGoogle Scholar
  7. 7.
    Chen YX, Wang K, Lou LP (2004) J Photochem Photobiol A 163:281CrossRefGoogle Scholar
  8. 8.
    Kobayashi M, Kuma R, Masaki S, Sugishima N (2005) Appl Catal B 60:173CrossRefGoogle Scholar
  9. 9.
    Anpo M, Takeuchi M (2003) J Catal 216:505CrossRefGoogle Scholar
  10. 10.
    Tanaka T, Teramura K, Yamamoto T, Takenaka S, Yoshida S, Funabiki T (2002) Photochem Photobiol A 148:277CrossRefGoogle Scholar
  11. 11.
    Liu ZY, Quan X, Fu HB, Li XY, Yang K (2004) Appl Catal B 52:33CrossRefGoogle Scholar
  12. 12.
    Li ZJ, Hou B, Xu Y, Wu D, Sun YH (2005) J Colloid Interface Sci 288:149CrossRefGoogle Scholar
  13. 13.
    Miyashita K, Kuroda S, Ubukata T, Ozawa T, Kubota H (2001) J Mater Sci 36:3877. doi: CrossRefGoogle Scholar
  14. 14.
    Arai Y, Tanaka K, Khlaifat AL (2006) J Mol Catal A 243:85CrossRefGoogle Scholar
  15. 15.
    Wilhelm P, Stephan D (2007) J Photochem Photobiol A 185:19CrossRefGoogle Scholar
  16. 16.
    Mei F, Liu C, Zhang L, Ren F, Zhou L, Zhao WK, Fang YL (2006) J Cryst Growth 292:87CrossRefGoogle Scholar
  17. 17.
    Dutoit DCM, Schneider M, Baiker A (1995) J Catal 153:165CrossRefGoogle Scholar
  18. 18.
    Liu AH, Liu PG (2003) Principle and application of x-ray diffraction. Chemical Industry Press House, Beijing, pp 31, 211Google Scholar
  19. 19.
    Spurr RA, Myers H (1957) Anal Chem 29:760CrossRefGoogle Scholar
  20. 20.
    Gunji T, Kasahara T, Abe Y (1998) J Sol-Gel Sci Technol 13:975CrossRefGoogle Scholar
  21. 21.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  22. 22.
    Eastman JA, Beno MA, Knapp OS, Thompson LJ (1995) Nanostruct Mater 6:543CrossRefGoogle Scholar
  23. 23.
    Fitzsimmons MA, Eastman JA, Robinson RA, Lawson AC, Thompson JD, Movshovich R, Satti J (1993) Phys Rev B 48:8245CrossRefGoogle Scholar
  24. 24.
    Takeuchi M, Onozaki Y, Matsumura Y, Uchida H, Kuji T (2003) Nucl Instrum Meth B 206:259CrossRefGoogle Scholar
  25. 25.
    Liu H, Ma HT, Li XZ, Li WZ, Wu M, Bao XH (2003) Chemosphere 50:39CrossRefGoogle Scholar
  26. 26.
    Golan Y, Hodes G, Rubinstein I (1996) J Phys Chem 100:2220CrossRefGoogle Scholar
  27. 27.
    Kim J, Song KC, Foncillas S, Pratsinis SE (2001) J Eur Ceram Soc 21:2863CrossRefGoogle Scholar
  28. 28.
    Rodríguez-Talavera R, Vargas S, Arroyo-Murillo R, Montiel-Campos R, Haro-Poniatowski E (1997) J Mater Res 12:439CrossRefGoogle Scholar
  29. 29.
    Apatiga LM, Rivera E, Castano VM (2007) J Am Ceram Soc 90:932CrossRefGoogle Scholar
  30. 30.
    Sun YJ, Egawa T, Zhang LG, Yao X (2002) Jpn J Appl Phys 41:L945CrossRefGoogle Scholar
  31. 31.
    Reidy DJ, Holmes JD, Morris MA (2006) J Eur Ceram Soc 26:1527CrossRefGoogle Scholar
  32. 32.
    Neelam J, Mahesh B, Preeti A, Veda R (2005) Thermochim Acta 427:37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentTaiyuan University of TechnologyTaiyuanChina
  2. 2.Key Laboratory of Interface and Engineering in Advanced Material, Ministry of EducationTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations