Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 2046–2052 | Cite as

Modeling of nonlinear viscoelasticity at large deformations

  • G. Spathis
  • E. KontouEmail author
Article

Abstract

A constitutive model of finite strain viscoelasticity, based on the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic parts, is presented. The nonlinear response of rubbers, manifested by the rate effect, cycling loading and stress relaxation tests was captured through the introduction of two internal variables, namely the constitutive spin and the back stress tensor. These parameters, widely used in plasticity, are applied in this work to model the nonlinear viscoelastic behaviour of rubbers. The experimental results, obtained elsewhere, related with shear deformation in monotonic and cyclic loading, as well as stress-relaxation, were simulated with a good accuracy.

Keywords

Stress Relaxation Test Velocity Gradient Tensor Deformation Gradient Tensor Multiplicative Decomposition Corotational Rate 

References

  1. 1.
    Green AE, Rivlin RS (1957) Arch Ratl Mech Anal 1:1CrossRefGoogle Scholar
  2. 2.
    Coleman BD, Noll W (1961) Rev Modern Phys 33(2):239CrossRefGoogle Scholar
  3. 3.
    Noll W (1958) Arch Ratl Mech Anal 2:197CrossRefGoogle Scholar
  4. 4.
    Pipkin AC (1964) Re Modern Phys 36(4):125Google Scholar
  5. 5.
    Valanis KC, Landel RF (1967) Trans Soc Rheol 11(2):243CrossRefGoogle Scholar
  6. 6.
    Flowers RJ, Lianis G (1970) Trans Soc Rheol 14(4):441CrossRefGoogle Scholar
  7. 7.
    Mason P (1960) J Appl Polym Sci 4:212CrossRefGoogle Scholar
  8. 8.
    Dannis ML (1962) J Appl Polym Sci 6:283CrossRefGoogle Scholar
  9. 9.
    Gent AN (1962) J Appl Polym Sci 6:433CrossRefGoogle Scholar
  10. 10.
    Lion A (1996) Continuum Mech Thermodyn 8:153CrossRefGoogle Scholar
  11. 11.
    Bergström JS, Boyce MC (2000) Mech Mater 32:627CrossRefGoogle Scholar
  12. 12.
    Bergström JS, Boyce MC (1998) J Mech Phys Solid 46:931CrossRefGoogle Scholar
  13. 13.
    Khan A, Zhang H (2001) Int J Plasticity 17:1167CrossRefGoogle Scholar
  14. 14.
    Khan AS, Lopez-Pamies O (2002) Int J Plasticity 18:1359CrossRefGoogle Scholar
  15. 15.
    Krempl E, Khan F (2003) Int J Plasticity 19:1069CrossRefGoogle Scholar
  16. 16.
    Khan F (2002) The deformation behavior of solid polymers and modeling with the viscoplasticity theory based overstress. Ph.D. thesis, Rensselaer Polytechnic Institute, New York.Google Scholar
  17. 17.
    Colak OU (2005) Int J Plasticity 21(2):145CrossRefGoogle Scholar
  18. 18.
    Naghdabadi R, Yeganeh M, Saidi AR (2005) Int J Plasticity 21(8):1546CrossRefGoogle Scholar
  19. 19.
    Kafka V, Vokoun D (2005) Int J Plasticity 21(8):1461CrossRefGoogle Scholar
  20. 20.
    Yoshida J, Abe M, Fujino Y (2004) J Eng Mech ASCE 130:129CrossRefGoogle Scholar
  21. 21.
    Amin AFMS (2001) Constitutive modeling for strain-rate dependency of natural and high damping rubbers. Doctoral Dissertation, Saitama University, JapanGoogle Scholar
  22. 22.
    Amin AFMS, Lion A, Sekita S, Okui Y (2006) Int J Plasticity 22:1610CrossRefGoogle Scholar
  23. 23.
    Huber N, Tsakmakis C (2000) Mech Mater 32:1CrossRefGoogle Scholar
  24. 24.
    Boyce MC, Arruda EM (2000) Rubber Chem Technol 73:504CrossRefGoogle Scholar
  25. 25.
    Dafalias YF (1983) J Appl Mech 50:561CrossRefGoogle Scholar
  26. 26.
    Dafalias YF (1985) ASME J Appl Mech 52:825CrossRefGoogle Scholar
  27. 27.
    Lee EH (1969) ASME J Appl Mech 36:1CrossRefGoogle Scholar
  28. 28.
    Lubliner J (1985) Mech Res Commun 12:93CrossRefGoogle Scholar
  29. 29.
    Dafalias YF (1998) Int J Plasticity 14:909CrossRefGoogle Scholar
  30. 30.
    Mandel J (1971) Plasticité classique et viscoplasticité. Courses and lectures, No. 97, International center for Mechanical Sciences, Udine. Springer, WienGoogle Scholar
  31. 31.
    Anand L, Gurtin ME (2003) Int J Solids Struct 40:1465CrossRefGoogle Scholar
  32. 32.
    Ziegler H (1959) J Appl Mech 17:55Google Scholar
  33. 33.
    Wang MC, Guth EJ (1952) J Chem Phys 20:1144CrossRefGoogle Scholar
  34. 34.
    Wolfram Research (1999) Inc. Mathematica, Version 4.0, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanics, School of Applied Mathematical and Physical SciencesNational Technical University of AthensAthensGreece

Personalised recommendations