Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 1844–1850 | Cite as

Application of the essential work of fracture method in ranking the performance in service of high-density polyethylene resins employed in pressure pipes

  • Fabiano Moreno Peres
  • Cláudio Geraldo SchönEmail author
Article

Abstract

High-density polyethylene resins have increasingly been used in the production of pipes for water- and gas-pressurized distribution systems and are expected to remain in service for several years, but they eventually fail prematurely by creep fracture. Usual standard methods used to rank resins in terms of their resistance to fracture are expensive and non-practical for quality control purposes, justifying the search for alternative methods. Essential work of fracture (EWF) method provides a relatively simple procedure to characterize the fracture behavior of ductile polymers, such as polyethylene resins. In the present work, six resins were analyzed using the EWF methodology. The results show that the plastic work dissipation factor, βwp, is the most reliable parameter to evaluate the performance. Attention must be given to specimen preparation that might result in excessive dispersion in the results, especially for the essential work of fracture we.

Keywords

Plastic Zone Linear Elastic Fracture Mechanic Stable Crack Growth Ligament Length Pressure Pipe 

Notes

Acknowledgements

We are grateful to Braskem S.A., Dow Latin America, Ipiranga Petroquímica and Solvay Indupa do Brasil S.A. for providing the base resins and the corresponding “regression curves” and to Cromex S.A. (São Paulo-SP, Brazil) for the extrusion of the films. The assistance of Mr. Leonardo di Nino in the tests is gratefully acknowledged. This work has been partially supported by the Brazilian National Research, Development and Innovation Council (CNPq, Brasília-DF, Brazil) with grants under projects PIBIC/USP and Proc. 302508/2003-1.

References

  1. 1.
    Hamouda HB, Simoes-Betbeder M, Grillon F, Blouet P, Billon N, Piques R (2001) Polymer 42:5425CrossRefGoogle Scholar
  2. 2.
    Jansson L-E (2003) Plastic pipes for water supply and sewage disposal, VBB/SWECO International, StockholmGoogle Scholar
  3. 3.
    Mills NJ (1993) Plastics: microestructure & engineering applications, 2nd edn. Edward Arnold, LondonGoogle Scholar
  4. 4.
    Peres FM (2007) Desenvolvimento de métodos alternativos para a avaliação da resistência à fratura por fluência de resinas de polietileno utilizadas para a extrusão de tubos de água. Master in Engineering Dissertation”, Escola Politécnica da Universidade de São Paulo, São Paulo-SP, Brazil, 2005. https://doi.org/www.teses.usp.br/teses/disponiveis/3/3133/tde-08112005-092736. Accessed 24 Aug
  5. 5.
    Fayole B, Verdu J (2005) Polym Eng Sci 45:424CrossRefGoogle Scholar
  6. 6.
    ISO 9080 (2003) Plastic-piping and ducting systems—Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolationGoogle Scholar
  7. 7.
    Peres FM, Schön CG (2007) J Polym Res 14:181CrossRefGoogle Scholar
  8. 8.
    ISO12162 (1995) Thermoplastic materials for pipes and fitting for pressure applications—classification and designation—overall service (design) coefficientGoogle Scholar
  9. 9.
    Fleissner M (1998) Polym Eng Sci 38:330CrossRefGoogle Scholar
  10. 10.
    Ting SKM, Williams JG, Ivankovic A (2006) Polym Eng Sci 46:763CrossRefGoogle Scholar
  11. 11.
    Cotterell B, Reddel JK (1977) Int J Frac 13:267Google Scholar
  12. 12.
    Mai Y-W, Powell P (1991) J Polym Sci B Polym Phys 29:785CrossRefGoogle Scholar
  13. 13.
    Marchal Y, Walhin J, Delannay F (1997) Int J Frac 87:189CrossRefGoogle Scholar
  14. 14.
    Tjong SC, Xu SA, Li RKY (2000) J Appl Polym Sci 77:2074CrossRefGoogle Scholar
  15. 15.
    Karger-kocsis J, Czigáni T, Moskala EJ (1997) Polymer 38:4587CrossRefGoogle Scholar
  16. 16.
    Pardoen T, Marchal Y, Delannay F (2002) Eng Frac Mech 69:617CrossRefGoogle Scholar
  17. 17.
    Lach R, Schneider K, Weidich R, Janke A, Knoll K (2005) Eur Polym J 41:383CrossRefGoogle Scholar
  18. 18.
    Williams JG, Rink M (2007) Eng Frac Mech 74:1009CrossRefGoogle Scholar
  19. 19.
    Clutton E (2001) In: Moore DR, Pavan A, Williams JG (eds) Fracture mechanics testing methods for polymers, adhesives and composites, Elsevier, Amsterdam, ESIS Publication 28).Google Scholar
  20. 20.
    Hashemi S (1997) J Mater Sci 32:1563CrossRefGoogle Scholar
  21. 21.
    Gere JM, Timochenko SP (1991) Mechanics of materials. Chapman & Hall, London, p 411CrossRefGoogle Scholar
  22. 22.
    Broberg KB (1968) Int J Frac Mech 4:11Google Scholar
  23. 23.
    Broberg KB (1971) J Mech Phys Solids 19:407CrossRefGoogle Scholar
  24. 24.
    Broberg KB (1975) J Mech Phys Solids 23:215CrossRefGoogle Scholar
  25. 25.
    Barenblatt GI (1962) In: Dryden HL, von Kármán Th (eds) Advances in applied mechanics, vol 7. Academic Press, New York, p 55Google Scholar
  26. 26.
    Wong JSS, Ferrer-balas D, Li RKY, Mai Y-W, Maspoch ML, Sue H-J (2003) Acta Mater 51:4929CrossRefGoogle Scholar
  27. 27.
    Kim HS, Karger-kocsis J (2004) Acta Mater 52:3123CrossRefGoogle Scholar
  28. 28.
    Chan WYF, Williams JG (1994) Polymer 35:1666CrossRefGoogle Scholar
  29. 29.
    Saleemi AS, Nairn JA (1990) Polym Eng Sci 30:211CrossRefGoogle Scholar
  30. 30.
    Wu J, Mai YW (1996) Polym Eng Sci 36:2275CrossRefGoogle Scholar
  31. 31.
    Jing B, Dai W, Chen S, Hu T, Liu P (2007) Mater Sci Eng A 444:84CrossRefGoogle Scholar
  32. 32.
    Tjong SC, Xu SA, Mai YW (2003) Mater Sci Eng A 347:338CrossRefGoogle Scholar
  33. 33.
    Dasari A, Misra RDK (2003) Mater Sci Eng A 358:356CrossRefGoogle Scholar
  34. 34.
    Mai YW, Cotterell B (1985) Eng Frac Mech 21:123CrossRefGoogle Scholar
  35. 35.
    Pegoretti A, Marcchi A, Riccò T (1997) Polym Eng Sci 37:1045CrossRefGoogle Scholar
  36. 36.
    Kinlock AJ, Williams JG (1980) J Mater Sci 15:987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fabiano Moreno Peres
    • 1
  • Cláudio Geraldo Schön
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringEscola Politécnica da Universidade de São PauloSao PauloBrazil

Personalised recommendations