Journal of Materials Science

, Volume 43, Issue 6, pp 1885–1889 | Cite as

Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses

  • Akitoshi HayashiEmail author
  • Keiichi Minami
  • Fuminori Mizuno
  • Masahiro Tatsumisago


The 70Li2S·30P2S5 (mol%) glass was prepared by the melt quenching method and the glass–ceramic electrolytes were obtained by heating the prepared glass over crystallization temperatures. The superionic metastable Li7P3S11 crystal was formed by heating the glass in the temperature range from 280 and 360 °C. The conductivity of the glass–ceramics was enhanced by the precipitation and growth of the Li7P3S11 crystal, and the highest conductivity of 4.1 × 10−3 S cm−1 at room temperature was achieved in the glass–ceramic heated at 360 °C for 1 h. The Li7P3S11 crystal changed into the thermodynamically stable phase such as the Li4P2S6 crystal with further increasing heat treatment temperature and holding time, resulting in lowering conductivities of the glass–ceramics.


Solid Electrolyte Mechanical Milling P2S5 Precipitate Crystal Prepared Glass 



This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and an Industrial Technology Research Grant Program from New Energy and Industrial Technology Development Organization (NEDO) of Japan.


  1. 1.
    Mercier R, Malugani JP, Fahys B (1981) Solid State Ionics 5:663CrossRefGoogle Scholar
  2. 2.
    Pradel A, Ribes M (1986) Solid State Ionics 18/19:351CrossRefGoogle Scholar
  3. 3.
    Tatsumisago M, Hayashi A (2005) Solid state ionics for batteries. Springer-Verlag, p 32Google Scholar
  4. 4.
    Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Electrochem Commun 5:111CrossRefGoogle Scholar
  5. 5.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Adv Mater 17:918CrossRefGoogle Scholar
  6. 6.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Electrochem Solid-State Lett 8:A603CrossRefGoogle Scholar
  7. 7.
    Morimoto H, Yamashita H, Tatsumisago M, Minami T (1999) J Am Ceram Soc 82:1352CrossRefGoogle Scholar
  8. 8.
    Tatsumisago M, Yamashita H, Hayashi A, Morimoto H, Minami T (2000) J Non-Cryst Solids 274:30CrossRefGoogle Scholar
  9. 9.
    Hayashi A, Fukuda T, Hama S, Yamashita H, Morimoto H, Minami T, Tatsumisago M (2004) J Ceram Soc Jpn 112:S695Google Scholar
  10. 10.
    Mizuno F, Hama S, Hayashi A, Tadanaga K, Minami T, Tatsumisago M (2002) Chem Lett 1244Google Scholar
  11. 11.
    Minami K, Mizuno F, Hayashi A, Tatsumisago M (2007) Solid State Ionics 178:837CrossRefGoogle Scholar
  12. 12.
    Tachez M, Malugani JP, Mercier R, Robert G (1984) Solid State Ionics 14:181CrossRefGoogle Scholar
  13. 13.
    Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M (2007) Solid State Ionics 178:1163CrossRefGoogle Scholar
  14. 14.
    Kanno R, Murayama M (2001) J Electrochem Soc 148:A742CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akitoshi Hayashi
    • 1
    Email author
  • Keiichi Minami
    • 1
  • Fuminori Mizuno
    • 1
  • Masahiro Tatsumisago
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations