Journal of Materials Science

, Volume 43, Issue 5, pp 1650–1663 | Cite as

Development of epoxy-based electrets

  • Yu-Cheng Liu
  • Yasuhiro Aoyagi
  • D. D. L. ChungEmail author


The use of a diepoxide resin in the form of 1,4-butanediol diglycidyl ether as the epoxy resin, lithium perchlorate (20 wt.%) as the ionic salt, a hardener (4,7,10-trioxatridecane-1,13-diamine, 15 wt.%) as the curing agent, and a poling DC electric field of 720 V/m gives an electret that exhibits a maximum voltage of 3.4 V during poling (30 min) and a stabilized voltage of 0.67 V after depoling (7.0 h). An epoxy system that hardens slowly (such as one with less hardener) is preferred, due to the longer time during poling for the ions to remain mobile. The rate of hardening rather than that of curing is the governing factor. The lithium salt hastens the curing, but it provides the ions and stabilizes the electret voltage, particularly during the first 30 min of depoling. After the first 30 min of depoling, crosslinking significantly enhances the stability of the electret voltage. The time constant for depoling is 0.8 h during the first 30 min of depoling and is 9 h afterward. Decrease of the lithium salt proportion from 20 to 10 wt.% still provides an effective electret, although the performance is reduced. An epoxy resin produced from Bisphenol F and epichlorohydrin is ineffective due to the high viscosity and fast hardening.


Carbon Fiber Applied Electric Field Relative Dielectric Constant Specimen Type Epoxy System 



Funding from Mark Diamond Research Fund, University at Buffalo, State University of New York, is gratefully acknowledged. Samples of epoxy and curing agent were kindly provided by Resolution Performance Products (Houston, TX) and BASF Corporation (Florham Park, NJ), respectively.


  1. 1.
    Hsieh WH, Hsu TY, Tai YC (1997) Transducers 97:1425Google Scholar
  2. 2.
    Thielemann C, Hess G (1999) In: Proceedings of SPIE – The International Society for Optical Engineering, vol 3680. Design, test and microfabrication of MEMS and MOEMS. SPIE, pp 748–756Google Scholar
  3. 3.
    Zou Q, Tan Z, Wang Z, Pang J, Qian X, Zhang Q, Lin R, Yi S, Gong H, Liu L, Li Z (1998) J Microelectromech Syst 7:224CrossRefGoogle Scholar
  4. 4.
    Gaynor PT, Hughes JF (1998) Med Biol Eng Comput 36:615CrossRefGoogle Scholar
  5. 5.
    Shumakov VI, Chepurov AK, Kazlove VK, Kazakova TI (1975) Polim Med 5:247Google Scholar
  6. 6.
    Scott JF, Zubko P (2005) In: Proceedings of the 12th international symposium on electrets (ISE 12), 11–14 Sep 2005, Salvador, Brazil. IEEE, pp 113–115Google Scholar
  7. 7.
    Magerramov AM, Kerimov MK, Hamidov EM (2004) In: Radiation safety problems in the Caspian region. NATO science series, IV: earth and environmental sciences, vol 41. Springer, The Netherlands, pp 205–209Google Scholar
  8. 8.
    Bauer S, Bauer-Gogonea S, Dansachumller M, Graz I, Leonhartsberger H, Salhofer H, Schwoediauer R (2003) In: Proceedings of the IEEE ultrasonics symposium, vol 1. IEEE, pp 370–376Google Scholar
  9. 9.
    Sahu DK, Khare PK, Shrivastava RK (2004) Indian J Phys 78:1205Google Scholar
  10. 10.
    Khare PK, Sahu DK, Verma A, Srivatava RK (2004) Indian J Pure Appl Phys 42:693Google Scholar
  11. 11.
    Fedosov SN, Sergeeva AV, Giacometti JA, Ribeiro PA (1999) In: Proceedings of SPIE – The International Society for Optical Engineering, vol 4017. Polymers and liquid crystals. SPIE, pp 53–58Google Scholar
  12. 12.
    Holstein P, Leister N, Weber U, Geschke D, Binder H, Monti GA, Harris RK (1999) In: Proceedings of the 10th international symposium on electrets (ISE 10), Delphi, 22–24 Sept 1999, Greece. IEEE, pp 509–512Google Scholar
  13. 13.
    Eisenmenger W, Schmidt H, Dehlen B (1999) Braz J Phys 29:295CrossRefGoogle Scholar
  14. 14.
    Frensch H, Wendorff JH (1985) In: Proceedings of the 5th international symposium on electrets (ISE 5), 1985. IEEE, pp 132–137Google Scholar
  15. 15.
    Sessler GM, Gerhard-Multhaupt R, Von Seggern H (1985) In: Proceedings of the 5th international symposium on electrets (ISE 5), 1985. IEEE, pp 565–570Google Scholar
  16. 16.
    Mellinger A, Singh R, Wegener M, Wirges W, Suarez RF, Lang SB, Santos LF, Gerhard-Multhaupt R (2005) In: Proceeding of the 12th international symposium on electrets (ISE 12), 11–14 Sept 2005, Salvador, Brazil. IEEE, pp 212–215Google Scholar
  17. 17.
    Gol’tsov YI, Kramarenko IS, Panchenko EM, Zagoruiko VA, Mal’tsev VT, Sokolova TV (1983) USSR Avail VINITI Deposited Doc, (VINITI 2386-83), 19 ppGoogle Scholar
  18. 18.
    Gubkin AN, Popova OS, Ogloblin VA, Kuskova AM (1974) In: Sb Ref –Vses Konf “Fiz Dielektr Perspekt Ee Razvit”, Meeting Date 1973, pp 2126–2127Google Scholar
  19. 19.
    Gubkin AN, Kashtanova AM, Ogloblin VA, Rastorgueva AV (1972) USSR Tr Mosk Inst Elektron Mashinostr 21:38Google Scholar
  20. 20.
    Nakamura S, Ueshima M, Kobayashi T, Yamashita K (2003) Key Eng Mater 240–242 (Bioceramics) 445Google Scholar
  21. 21.
    Gerhard-Multhaupt R, Kunstler W, Gome T, Pucher A, Weinhold T, SEIß M (2000) IEEE Trans Diel Electr Insul 7:480CrossRefGoogle Scholar
  22. 22.
    Mellinger A, Gonzalez FC, Gerhard-Multhaupt R, Santos LF, Faria RM (2002) In: Proceedings of the 11th international symposium on electrets (ISE 11), 1–3 Oct 2002, Melbourne, Australia. IEEE, pp 7–10Google Scholar
  23. 23.
    Krashennikov AI, Lipaev SM, Rybnikov YS, Sbrodova LI (1986) USSR, Lakokrasochnye Materialy i Ikh Primenenie 3:38Google Scholar
  24. 24.
    Lee H, Neville K (1957) Epoxy resins, Ch. 2. McGraw-Hill Book Company, New YorkGoogle Scholar
  25. 25.
    Peters ST (ed) (1998) Handbook of composites, Ch. 2. Chapman and Hall, New YorkGoogle Scholar
  26. 26.
    “Practical use of anhydrous LiClO4 and Mg(ClO4)2 in organic synthesis”, GFS Chemicals Inc, 2002, Issue No. 1,, as on Aug 24, 2007
  27. 27.
    Silva MM, Nunes SC, Barbosa PC, Evans A, de Zea Bermudez V, Smith MJ, Ostrovskii D (2006) Electrochim Acta 52:1542CrossRefGoogle Scholar
  28. 28.
    Santhosh P, Vasudevan T, Gopalan A, Lee K-P (2006) Mater Sci Eng B 135:65CrossRefGoogle Scholar
  29. 29.
    Wu C-G, Wu C-H, Lu M-I, Chuang H-J (2006) J Appl Polym Sci 99:1530CrossRefGoogle Scholar
  30. 30.
    Wegener M, Gerhard-Multhaupt R (2003) IEEE Trans Ultrason Ferroelectr Frequency Control 50:921CrossRefGoogle Scholar
  31. 31.
    Koh WH, Park IH (2003) J Korean Phys Soc 42:S920Google Scholar
  32. 32.
    Nishimura Y (1999) U.S. Patent 5951959Google Scholar
  33. 33.
    Fedosov SN, Sergeeva AE (1993) J Electrostat 30:327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yu-Cheng Liu
    • 1
  • Yasuhiro Aoyagi
    • 1
  • D. D. L. Chung
    • 1
    Email author
  1. 1.Composite Materials Research LaboratoryUniversity at Buffalo, State University of New YorkBuffaloUSA

Personalised recommendations