Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1505–1509 | Cite as

Fabrication and characterization of anisotropic dielectrics for low-loss microwave applications

  • Lanlin Zhang
  • Gokhan Mumcu
  • Salih Yarga
  • Kubilay Sertel
  • John L. Volakis
  • Henk VerweijEmail author
Article

Abstract

New magneto-photonic assembly designs for high-gain antennas require dielectrics with a significant anisotropy and low loss at GHz frequencies. This paper describes an approach to fabricate such dielectrics from ceramic laminates. These laminates consist of two ceramics with largely different permittivities and low dielectric losses. Alternating layers of commercially available α-Al2O3 and Nd-doped BaTiO3 were laminated using organic adhesives. Equivalent permittivity tensors and loss tangents were characterized using a resonant cavity-based approach, which was coupled with a finite-element method full-wave solver. Measured permittivity values were in good agreement with mean field predictions; a minimum loss tangent 1.1 × 10−3 was obtained when using one-component epoxy (Loctite®-3982) adhesive. Application of two-component epoxy (M-bond 610) adhesive results in a slightly higher loss but better mechanical properties and machinability. These laminates were used to demonstrate high gain in a prototype antenna with 6 misaligned anisotropic dielectric layers.

Keywords

Rutile Anisotropic Dielectric Vitreous Silica Organic Adhesive Crystal Rutile 

Notes

Acknowledgement

This work was supported by the U.S. Air Force Office of Scientific Research under the Grant FA9550-04-1-0359.

References

  1. 1.
    Figotin A, Vitebsky I (2001) Phys Rev E 63:066609CrossRefGoogle Scholar
  2. 2.
    Figotin A, Vitebsky I (2003) Phys Rev B 67:165210CrossRefGoogle Scholar
  3. 3.
    Mumcu G, Sertel K, Volakis JL, Figotin A, Vitebsky I (2004) IEEE Ante Propagat Soc Symp 2:1395CrossRefGoogle Scholar
  4. 4.
    Tobar ME, Krupka J, Ivanov EN, Woode RA (1998) J Appl Phys 83(3):1604CrossRefGoogle Scholar
  5. 5.
    Collin RE (1958) IRE Trans Microw Theo Tech 6(2):206CrossRefGoogle Scholar
  6. 6.
    Gong X et al (2005) IEEE Trans Micro Theo Tech 53(11):3638CrossRefGoogle Scholar
  7. 7.
    Alford NM, Penn SJ (1996) J Appl Phys 80(10):5895CrossRefGoogle Scholar
  8. 8.
    Templeton A et al (2000) J Am Ceram Soc 83(1):95CrossRefGoogle Scholar
  9. 9.
    Kajfez D, Guillon P (1986) In: Dielectric resonators. Artech House, Inc., Dedham, p 53Google Scholar
  10. 10.
    Krupka J, Derzakowski K, Riddle B, Baker-Jarvis J (1998) Meas Sci Technol 9(10):1751CrossRefGoogle Scholar
  11. 11.
    Gurevich VL, Tagantsev AK (1991) Adv Phys 40(6):719CrossRefGoogle Scholar
  12. 12.
    Alford NM et al (2001) J Eur Ceram Soc 21:2605CrossRefGoogle Scholar
  13. 13.
    Mcneal MP, Jang SJ, Newnham RE (1998) J Appl Phys 83(6):3288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lanlin Zhang
    • 1
  • Gokhan Mumcu
    • 2
  • Salih Yarga
    • 2
  • Kubilay Sertel
    • 2
  • John L. Volakis
    • 2
  • Henk Verweij
    • 1
    Email author
  1. 1.Group Inorganic Materials Science, Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.ElectroScience Laboratory, Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations