Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1638–1643 | Cite as

Low temperature synthesis of nanocrystalline Sb2Te3 by mechanical alloying

  • M. Zakeri
  • M. Allahkarami
  • Gh. Kavei
  • A. Khanmohammadian
  • M. R. Rahimipour
Article

Abstract

Sb40Te60 thermoelectric compound was fabricated via mechanical milling of bismuth and tellurium as starting materials. Effects of the milling time and heat treatment were investigated. X-ray diffraction (XRD) was used for the characterization of the ball-milled powders. Thermal behavior of the mechanically alloyed powders was studied by differential thermal analysis (DTA) and the morphological evolutions were monitored by scanning electron microscopy (SEM). Results showed that the reaction between Sb and Te initiated after 5 h of milling and completed after 10 h. The synthesized Sb2Te3 had anisotropic property with the mean grain size of 13 nm at the end of milling. Also this compound could not be formed during heating by DTA at low temperatures (<500 °C). Under the sintering conditions the maximum values of electrical conductivity and power factor were found to be 860 (Ω cm)−1 and 45 (μW cm−1 K−1), respectively.

Keywords

Milling Crystallite Size Differential Thermal Analysis Mechanical Alloy Power Factor 

References

  1. 1.
    Scherrer H, Chitroub M, Roche C, Scherrer S (1998) Proceeding of the International Conference on Thermoelectric, ICT, IEEE, Piscataway, NJ, USA, pp 115–120Google Scholar
  2. 2.
    Yang J, Aizawa T, Yamamoto A, Ohta T (2000) J Alloys Compd 309:225CrossRefGoogle Scholar
  3. 3.
    Lennoir B, Dauscher A, Cssart M, Ravich Y, Scherrer H (1998) J Phys Chem Solids 59(1):129CrossRefGoogle Scholar
  4. 4.
    Dzhafarov EG, Alieva TD, Abdinov D (2001) Inorg Mater 37(2):135CrossRefGoogle Scholar
  5. 5.
    Syrayanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  6. 6.
    Eskandarany El, Sherif M (2001) Mechanical alloying for fabrication of advanced engineering materials. Noyes Publication, NorwichGoogle Scholar
  7. 7.
    Zakeri M, Yazdani-Rad R, Enayati MH, Rahimipoor MR (2006) Mater Sci Eng A 430:185CrossRefGoogle Scholar
  8. 8.
    Yang J, Fan XA, Ghen RG, Zhu W, Bao SQ, Duan X (2006) J Alloys Compd 416:270CrossRefGoogle Scholar
  9. 9.
    Yang J, Chen R, Fan X, Bao S, Zhu W (2006) J Alloys Compd 407:330CrossRefGoogle Scholar
  10. 10.
    Yang J, Aizawa T, Yamamoto A, Ohta T (2000) J Alloys Compd 312:326CrossRefGoogle Scholar
  11. 11.
    Yang J, Aizawa T, Yamamoto A, Ohta T (2001) Mater Chem Phys 70:90CrossRefGoogle Scholar
  12. 12.
    Kim HC, Oh TS, Hyun DB (2000) J Phys Chem Solids 61:743CrossRefGoogle Scholar
  13. 13.
    Lopez RM, Lenoir B, Dauscher A, Scherrer H, Scherrer S (1998) Solid State Commun 108:285CrossRefGoogle Scholar
  14. 14.
    Williamson GK, Hall WH (1953) Acta Metall 1:22CrossRefGoogle Scholar
  15. 15.
    Zakeri M, Yazdani-Rad R, Enayati MH, Rahimipour MR, Mobasherpour I (2007) J Alloys Compd 430:170CrossRefGoogle Scholar
  16. 16.
    Klug HP, Alexander L (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn, chapter 9. John Wiley & Sons, New York, p 618Google Scholar
  17. 17.
    Petrov AV, Kutasov VA (1964) Thermoelectric properties of semiconductors, 1st edn. SpringerGoogle Scholar
  18. 18.
    Kubaschewski O (1993) Materials thermochemistry, 6th edn. Oxford Pergamon PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Zakeri
    • 1
  • M. Allahkarami
    • 1
  • Gh. Kavei
    • 1
  • A. Khanmohammadian
    • 2
  • M. R. Rahimipour
    • 1
  1. 1.Ceramic DepartmentMaterials and Energy Research CenterTehranIran
  2. 2.Materials Engineering DepartmentIslamic Azad University (Saveh branch)SavehIran

Personalised recommendations