Journal of Materials Science

, Volume 43, Issue 6, pp 1802–1810 | Cite as

Activation energy for growth in single size distribution and the dissolution features of γ′ precipitates in the superalloy IN738LC

  • A. K. Dwarapureddy
  • E. Balikci
  • S. Ibekwe
  • A. RamanEmail author


Activation energy for the growth of γ′ precipitates in single size unimodal distribution has been determined by annealing the solution-treated and quenched alloy with fine 70 nm size cooling precipitates at 1,040°, 1,080°, and 1,100 °C for different periods of time up to 100 h. Results obtained using the LSW matrix diffusion model concur with the deductions of earlier work that the activation energy for growth of precipitates in single size distribution is not a constant, but increases with increasing size of precipitates. Also, the activation energy plotted against the corresponding precipitate sizes yields a straight line with a positive slope. During long-time annealing, precipitate particles line up to reduce interactive free energy and grow to fairly coarse sizes along the matrix grain boundaries. Some of the particles in isolated islands or those lined along the matrix grain boundaries attain critical maximum sizes and begin to dissolve into the matrix in four different ways, designated as Modes 1 through 4. The various modes of dissolution are described and the possibility of repeated growth and dissolution in cycles is envisaged.


Activation Energy Coarse Particle Critical Size Precipitate Phase Precipitate Particle 



The authors acknowledge partial support for supplies from the NASA LASPACE Grant NASA (00-01)—DGAP-08, given through LA-EPSCOR.


  1. 1.
    Balikci E, Raman A, Mirshams RA (1997) Met Mater Trans A 28A:1993CrossRefGoogle Scholar
  2. 2.
    Balikci E (1998) Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, USAGoogle Scholar
  3. 3.
    Roy I, Balikci E, Ibekwe S, Raman A (2005) J Mater Sci 40(23):6207CrossRefGoogle Scholar
  4. 4.
    Miyazaki T, Imamura M, Kozakai T (1982) Mater Sci Eng 54:9CrossRefGoogle Scholar
  5. 5.
    Doi M, Miyazaki T, Wakatsuki T (1984) Mater Sci Eng 67:247CrossRefGoogle Scholar
  6. 6.
    Yeom SJ, Yoon DY, Henry MF (1993) Met Trans A 24A:1975; see also references 14 to 19 given in that work for prior observation of octetsGoogle Scholar
  7. 7.
    Khachaturyan AG, Semenovskaya SV, Morris JW Jr (1988) Acta Met 36(6):1563CrossRefGoogle Scholar
  8. 8.
    Balikci E, Mirshams RA, Raman A (1999) Z Metallkd 90:132Google Scholar
  9. 9.
    Mughrabi H, Tetzlaff U (2000) Adv Eng Mater 2(6):319CrossRefGoogle Scholar
  10. 10.
    Lifshitz I, Slyozov V (1961) J Phys Chem Solids 11:35CrossRefGoogle Scholar
  11. 11.
    Wagner C (1961) Z Electrochem 65:581Google Scholar
  12. 12.
    Baldan A (2002) J Mater Sci 37(12):2391CrossRefGoogle Scholar
  13. 13.
    Balikci E, Ferrell RE Jr, Raman A (1999) Z Metallkd 90:141Google Scholar
  14. 14.
    Kuehmann CJ, Voorhees PW (1996) Met Mater Trans 27A:937CrossRefGoogle Scholar
  15. 15.
    Snyder VA, Alkemper J, Voorhees PW (2001) Acta Mater 49:699CrossRefGoogle Scholar
  16. 16.
    Footner PK, Richards BP (1982) J Mater Sci 17(7):2141CrossRefGoogle Scholar
  17. 17.
    Ges A, Fornaro O, Palacio H (1997) J Mater Sci 32(14):3687CrossRefGoogle Scholar
  18. 18.
    Ardell AJ, Ozolins V (2005) Nat Mater 4:309CrossRefGoogle Scholar
  19. 19.
    Roy I (2003) M.S. Thesis, Louisiana State University, Baton Rouge, LA, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. K. Dwarapureddy
    • 1
  • E. Balikci
    • 2
  • S. Ibekwe
    • 3
  • A. Raman
    • 1
    Email author
  1. 1.Materials Group, Mechanical Engineering DepartmentLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Mechanical EngineeringBogazici University - South CampusBebek, IstanbulTurkey
  3. 3.Mechanical Engineering DepartmentSouthern UniversityBaton RougeUSA

Personalised recommendations