Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1624–1629 | Cite as

Effect of frequency and duty cycle on corrosion behavior of pulsed nanocrystalline plasma electrolytic carbonitrided CP-Ti

  • Mahmood Aliofkhazraei
  • Alireza Sabour RouhaghdamEmail author
  • Mohsen Sabouri
Article

Abstract

Potentiodynamic polarization and electrochemical impedance spectroscopy were employed to test carbonitrided CP-Ti, treated by a relatively new method called pulsed-plasma electrolytic carbonitriding. The results show excellent corrosion resistance for modified CP-Ti. The effect of frequency and duty cycle of pulsed current were investigated. It was found that pulse frequency and duty cycle affect the size and porosity of nanocrystalline carbonitrides and by controlling these effective parameters surface modification can render the CP-Ti material extremely corrosion resistant.

Keywords

Corrosion Rate Duty Cycle Electrochemical Impedance Spectroscopy Corrosion Behavior Potentiodynamic Polarization 

Notes

Acknowledgement

The authors would like to express their gratitude to National Association of Nanoscience and Nanotechnology of Iran and Arvandan Oil and Gas Production Company (TMU 85-09-66) for financial support of this project.

References

  1. 1.
    Donachie MJ (2000) Titanium a technical guide, 2nd edn. ASM International, United States of AmericaGoogle Scholar
  2. 2.
    Lutjering G, Albrecht J (2004) Ti-2003 science and technology. Wiley-VCH, FrankfurtGoogle Scholar
  3. 3.
    González JEG, Mirza-Rosca JC (1999) J Electroanal Chem 471(2):109CrossRefGoogle Scholar
  4. 4.
    Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT (2001) J Prosthet Dent 85(2):195CrossRefGoogle Scholar
  5. 5.
    Burstein GT, Liu C, Souto RM (2005) Biomaterials 26:245CrossRefGoogle Scholar
  6. 6.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science. Academic PressGoogle Scholar
  7. 7.
    Vanzillotta PS, Sader MS, Bastos IN, de Almeida Soares G (2006) Dent Mater 22(3):275CrossRefGoogle Scholar
  8. 8.
    Cai Z, Bunce N, Nunn ME, Okabe T (2001) Biomaterials 22(9):979CrossRefGoogle Scholar
  9. 9.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Surf Coat Technol 122:73CrossRefGoogle Scholar
  10. 10.
    Shen D, Wang Y, Nash P, Xing G (2007) Mater Sci Eng A 458(1–2):240CrossRefGoogle Scholar
  11. 11.
    Li XM, Han Y, Li YS (2007) Surf Coat Technol 201(9–11):5326CrossRefGoogle Scholar
  12. 12.
    Aliofkhazraei M, Taheri P, Sabour AR, Dehghanian Ch (2007) Mater Sci (in press, will appear on No. 3)Google Scholar
  13. 13.
    Nie X, Tsotsos C, Wilson A, Yerokhin AL, Leyland A, Matthews A (2001) Surf Coat Technol 139:135CrossRefGoogle Scholar
  14. 14.
    Li XM, Han Y (2006) Electrochem Commun 8:267CrossRefGoogle Scholar
  15. 15.
    Taheri P, Dehghanian Ch, Aliofkhazraei M, Sabour AR (2007) Plasma Process Polym 4(4):S711Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mahmood Aliofkhazraei
    • 1
  • Alireza Sabour Rouhaghdam
    • 1
    Email author
  • Mohsen Sabouri
    • 1
  1. 1.Faculty of Engineering, Materials Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations