Journal of Materials Science

, Volume 43, Issue 5, pp 1619–1623 | Cite as

Morphology and luminescent properties of Al3+/Mg2+-doped Y2O3:Eu3+ phosphor

  • Zhen Liu
  • Yang Feng
  • Dongmei Jiao
  • Na Zhang
  • Huan JiaoEmail author


Al3+/Mg2+ doped Y2O3:Eu phosphor was synthesized by the glycine-nitrate solution combustion method. In contrast to Y2O3:Eu which showed an irregular shape of agglomerated particles (the mean particle size >10 μm), the morphology of Al3+/Mg2+ doped Y2O3:Eu crystals was quite regular. Al3+/Mg2+ substituting Y3+ in Y2O3:Eu resulted in an obvious decrease of the particle size. Meanwhile, higher the Al3+/Mg2+ concentration, smaller the particle size. In particular, the introduction of Al3+ ion into Y2O3 lattice induced a remarkable increase of PL and CL intensity. While, for Mg2+ doped Y2O3:Eu samples, their PL and CL intensities decreased. The reason that causes the variation of PL and CL properties for Al3+ and Mg2+ doped Y2O3:Eu crystals was concluded to be related to sites of Al3+ and Mg2+ ions inclined to take and the difference of ion charge.


Y2O3 Luminescent Property Luminescent Intensity Dope Sample MgCO3 



We are thankful for the financial support from the State Key Program for Basic Research of China (G1998061308), the National Nature Science Foundation of China (20221101), and the Nature Science Foundation of Shaanxi Province (2004B31).


  1. 1.
    Sun LD, Qian Ch, Liao ChSh, Wang XL, Yan ChH (2001) Solid State Commun 119:393CrossRefGoogle Scholar
  2. 2.
    Jaskie JE (1996) Mater Res Bull 21:59CrossRefGoogle Scholar
  3. 3.
    Jiao H, Liao FH, Tian ShJ, Jing XP (2004) J Electrochem Soc 151(7):H39CrossRefGoogle Scholar
  4. 4.
    Jiao H, Wei LQ, Zhang N, Zhong M, Jing XP (2007) J Euro Cer Soc 27:185CrossRefGoogle Scholar
  5. 5.
    Jiao H, Wang XJ, Ye Sh, Jing XP (2007) J Luminesc 122–123:113CrossRefGoogle Scholar
  6. 6.
    Jiao H, Zhang N, Jing XP, Jiao DM (2007) Opt Mater 29:1023CrossRefGoogle Scholar
  7. 7.
    Ank TK, Minh LQ, Vu N, Houng TT, Huong NT, Barthon C, Strek W (2003) J Luminesc 102–103:391Google Scholar
  8. 8.
    Gouveia-Neto AS, da Costa EB, dos Santos PV, Bueno LA, Ribeiro SJL (2003) J Appl Phys 94:5678CrossRefGoogle Scholar
  9. 9.
    Bosze EJ, Hirata GA, Shea-Rohwer LE, Mckittrick J (2003) J Luminesc 104:47CrossRefGoogle Scholar
  10. 10.
    Jeong JH, Bae JS, Yi SS, Park JC, Kim YS (2003) J Phys Condens Matter 15:567CrossRefGoogle Scholar
  11. 11.
    Chong MK, Pita K, Kam CH (2004) Appl Phys A 79:433CrossRefGoogle Scholar
  12. 12.
    Shin SH, Kang JH, Jeon DY, Choi SH, Lee SH, You YC, Zang DS (2005) Solid State Commun 135:30CrossRefGoogle Scholar
  13. 13.
    Jeong JH, Moon BK, Seo HJ, Bao JS, Yi SS, Kim IW, Park HL (2003) Appl Phys Lett 83:1346CrossRefGoogle Scholar
  14. 14.
    Ko MG, Park JC, Kim DK, Byeon SH (2003) J Luminesc 104:215CrossRefGoogle Scholar
  15. 15.
    Yi SS, Bae JS, Moon BK, Jeong JH, Park JC, Kim IW (2002) Appl Phys Lett 81:3344CrossRefGoogle Scholar
  16. 16.
    Zou WG, Lü MK, Gu F, Wang SF, Zhou GJ, Xiu ZL, Xü HY (2005) Mater Letter 59:1020CrossRefGoogle Scholar
  17. 17.
    Rossner W, Jermann F, Ahne S, Ostertag M (1997) J Luminesc 72–4:708CrossRefGoogle Scholar
  18. 18.
    Sun BJ, Song HW, Lu ShZh, Yu XL (2003) J Rare Earths 21(Suppl):33Google Scholar
  19. 19.
    Moon HR, Ahn BT, Han JI, Park YK (1999) J Korean Phys Soc 35:S452Google Scholar
  20. 20.
    Park JCh, Moon HK, Kim DK, Byeon SH, Kim BCh, Suh KS (2000) Appl Phys Lett 77:2162CrossRefGoogle Scholar
  21. 21.
    Shannon RD (1976) Acta Cryst A32:751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zhen Liu
    • 1
  • Yang Feng
    • 1
  • Dongmei Jiao
    • 2
  • Na Zhang
    • 1
  • Huan Jiao
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Materials ScienceShaanxi Normal UniversityXi’anChina
  2. 2.China Petroleum and Chemical CorporationLuoyang CompanyLuoyangChina

Personalised recommendations