Journal of Materials Science

, Volume 43, Issue 4, pp 1389–1399 | Cite as

A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water

  • L. K. RandeniyaEmail author
  • A. B. Murphy
  • I. C. Plumb


Sulfur-doped titanium dioxide (TiO2) was investigated as a potential catalyst for photoelectrochemical hydrogen generation. Three preparation techniques were used: first ballmilling sulfur powder with Degussa P25 powder (P25), second, ball milling thiourea with P25, and third a sol–gel technique involving titanium (IV) butoxide and thiourea. The resulting powders were heat-treated and thin-film electrodes were prepared. In all three cases, the heat-treated powders contained small amounts of S (1–3%). However, Rietveld analysis on X-ray diffraction (XRD) measurements revealed no significant changes in lattice parameters. For the samples prepared using thiourea, X-ray photoelectron spectroscopy (XPS) measurements indicated the presence of N and C in the heat-treated powders in addition to S. In all cases, visible-ultraviolet spectroscopy performed on bulk powders confirmed the extension of absorption into the visible region. However, the same spectroscopic technique performed on thin-film electrodes (∼0.5 μm) suggests that the absorption coefficients were very small in the visible region (≤104 m−1). The first and third methods yielded powders with substantially smaller photocatalytic activity relative to P25 powder in the UV region. The electrodes prepared from powders obtained using the second method yielded photocurrents comparable to those prepared from P25 powder.


TiO2 Rutile Thiourea Coated Sample Tetrabutyl Titanate 



We are grateful to Dr John Dunlop for assistance with ball milling, and in the interpretation of XRD and SEM measurements, Drs Phil Martin and Avi Bendavid for assistance with XPS measurements, Dr Bin Yang and Dr Victor Luca (Australian Nuclear Science and Technology Organization) for performing the Rietveld analyses and TEM measurements, respectively, and Ms Julie Glasscock for assistance in coating samples and for thickness profiling of coated electrodes.


  1. 1.
    Asahi R, Morikawa T, Ohwaki T et al (2001) Science 293:269CrossRefGoogle Scholar
  2. 2.
    Bickley RI, Jayanty RKM, Navio JA et al (1991) Surface Sci 251–252:1052CrossRefGoogle Scholar
  3. 3.
    Chandra Babu KS, Srivastava ON (1988) Cryst Res Technol 23:555CrossRefGoogle Scholar
  4. 4.
    Chaturvedi S, Rodriguez JA, Jirsak T et al (1998) J Phys Chem B 102:7033CrossRefGoogle Scholar
  5. 5.
    Chen SZ, Zhang PY, Zhuang DM et al (2004) Catal Commun 5:677CrossRefGoogle Scholar
  6. 6.
    Ciszek JW, Keane ZK, Cheng L et al (2006) J Am Chem Soc 128:3179CrossRefGoogle Scholar
  7. 7.
    Diwald O, Thompson TL, Zubkov T et al (2004) J Phys Chem B 108:6004CrossRefGoogle Scholar
  8. 8.
    Gopinath CS (2006) J Phys Chem B 110:7079CrossRefGoogle Scholar
  9. 9.
    Grey I, Madsen I, Bordet P, Wilson N, Li C (2005) In: White T et al. (ed) Advances in Ecomaterials, vol 1, Electrochemistry and Catalysis. Stallion Press, Singapore, p 35Google Scholar
  10. 10.
    Hebenstreit ELD, Hebenstreit W, Diebold U (2001) Surf Sci 470:347CrossRefGoogle Scholar
  11. 11.
    Li D, Haneda H, Hishita S et al (2005) Mater Sci Eng: B 117:67CrossRefGoogle Scholar
  12. 12.
    Liu H, Gao L (2004) J Am Ceram Soc 87:1582CrossRefGoogle Scholar
  13. 13.
    Mitchell PCH, Williams RJP (1960) J Chem Soc 1912Google Scholar
  14. 14.
    Murphy AB, Barnes PRF, Randeniya LK et al (2006) Int J Hydrogen Energy 31:1999CrossRefGoogle Scholar
  15. 15.
    Navio JA, Cerrillos CC, Real C (1996) Surf Interface Anal 24:355CrossRefGoogle Scholar
  16. 16.
    Navio JA, Real C, Bickley RI (1994) Surface Interface Anal 22:417CrossRefGoogle Scholar
  17. 17.
    Neumann B, Bogdanoff P, Tributsch H et al (2005) J Phys Chem B 109:16579CrossRefGoogle Scholar
  18. 18.
    Ohno T, Akiyoshi M, Umebayashi T et al (2004) Appl Catal A: Gen 265:115CrossRefGoogle Scholar
  19. 19.
    Ohno T, Mitsui T, Matsumura M (2003) Chem Lett 32:364CrossRefGoogle Scholar
  20. 20.
    Ohno T, Tsubota T, Nishijima K et al (2004) Chem Lett 33:750CrossRefGoogle Scholar
  21. 21.
    Ohno T, Tsubota T, Toyofuku M et al (2004) Catal Lett 98:255CrossRefGoogle Scholar
  22. 22.
    Onishi H, Aruga T, Egawa C et al (1988) Surf Sci 193:33CrossRefGoogle Scholar
  23. 23.
    Polcik M, Haase J, Wilde L et al (1997) Surf Sci 381:L568–L572CrossRefGoogle Scholar
  24. 24.
    Rodriguez JA, Hrbek J, Chang Z et al (2002) Phys Rev B 65:Article No. 235414Google Scholar
  25. 25.
    Rodriguez JA, Jirsak T, Chaturvedi S et al (1999) Surf Sci 442:400CrossRefGoogle Scholar
  26. 26.
    Saha NC, Tompkins HG (1992) J Appl Phys 72:3072CrossRefGoogle Scholar
  27. 27.
    Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384CrossRefGoogle Scholar
  28. 28.
    Sayago DI, Serrano P, Bohme O et al (2001) Surf Sci 482:9CrossRefGoogle Scholar
  29. 29.
    Shimanouchi T (1977) J Phys Chem Ref Data 6:993CrossRefGoogle Scholar
  30. 30.
    Suda Y, Kawasaki H, Ueda T et al (2004) Thin Solid Films 453–54:162CrossRefGoogle Scholar
  31. 31.
    Umebayashi T, Yamaki T, Itoh H et al (2002) Appl Phys Lett 81:454CrossRefGoogle Scholar
  32. 32.
    Umebayashi T, Yamaki T, Yamamoto S et al (2003) J Appl Phys 93:5156CrossRefGoogle Scholar
  33. 33.
    Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database, NIST standard reference database 20, Version 3.4 (Web Version) [Web Page]. Available at
  34. 34.
    Wang S, Gao Q, Wang J (2005) J Phys Chem B 109:17281CrossRefGoogle Scholar
  35. 35.
    Yu JC, Ho W, Yu J et al (2005) Environ Sci Technol 39:1175CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Wang J, Yin S et al (2004) J Am Ceram Soc 87:1161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.CSIRO Materials Science and EngineeringLindfieldAustralia

Personalised recommendations