Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1460–1470 | Cite as

ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope

  • Pedro M. F. J. CostaEmail author
  • Dmitri Golberg
  • Guozhen Shen
  • Masanori Mitome
  • Yoshio Bando
Article

Abstract

The electrical properties of wurtzite-type ZnO low-dimensional structures were analysed using a scanning tunnelling microscopy (STM) in situ holder for transmission electron microscopes (TEM). Compared to similar studies in the literature employing nanowires or nanobelts, our work illustrates that rather complex structures can be reliably analysed with this technique. Through controlled contact manipulations it was possible to alter the systems I–V characteristics and, in separate experiments, to follow their electrical response to cycles of induced stress. Analysis of the I–V curves showed higher than expected resistances which, according to the detailed TEM characterisation, could be correlated with the considerable density of defects present. These defects accumulate in specific areas of the complex structural arrays of ZnO and represent high resistance points responsible for structural failure, when the systems are subjected to extreme current flows.

Keywords

Versus Curve Schottky Barrier Semiconductor Nanowires Head Contact Bias Regime 

Notes

Acknowledgements

We are grateful to Dr Yoichiro Uemura and Mr Keiji Kurashima for technical assistance. Dr Ujjal K. Gautam is thanked for useful discussions. Dr Oleg Lourie, from Nanofactory Instruments AB, is acknowledged for his continuous support. We are indebted to Prof. J. M. Zuo for the use of WebEMAPS (https://doi.org/emaps.mrl.uiuc.edu/).

Supplementary material

10853_2007_2307_MOESM1_ESM.dv (437.9 mb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    Vigue F, Vennegues P, Vezian S, Laugt M, Faurie J-P (2001) Appl Phys Lett 79:194CrossRefGoogle Scholar
  2. 2.
    Jiao SJ, Zhang ZZ, Lu YM, Shen DZ, Yao B, Zhang JY, Li BH, Zhao DX, Fan XW, Tang ZK (2006) Appl Phys Lett 88:031911CrossRefGoogle Scholar
  3. 3.
    Ding Y, Wang ZL (2004) J Phys Chem B 108:12280CrossRefGoogle Scholar
  4. 4.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897CrossRefGoogle Scholar
  5. 5.
    Svensson K, Jompol Y, Olin H, Olsson E (2003) Rev Sci Instrum 74:4945CrossRefGoogle Scholar
  6. 6.
    Svensson K, Olin H, Olsson E (2004) Phys Rev Lett 93:145901CrossRefGoogle Scholar
  7. 7.
    Minor AM, Asif SAS, Shan Z, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL (2006) Nat Mater 5:697CrossRefGoogle Scholar
  8. 8.
    Huang JY, Chen S, Wang ZQ, Kempa K, Wang YM, Jo SH, Chen G, Dresselhaus MS, Ren ZF (2006) Nature 439:281CrossRefGoogle Scholar
  9. 9.
    Jin CH, Zhang ZY, Wang JY, Chen Q, Peng L-M (2006) Appl Phys Lett 89:213108CrossRefGoogle Scholar
  10. 10.
    Wang XD, Zhou J, Song JH, Liu J, Xu N, Wang ZL (2006) Nano Letters 6:2768CrossRefGoogle Scholar
  11. 11.
    Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) J Phys Chem B 107:659CrossRefGoogle Scholar
  12. 12.
    Shen G, Bando Y, Chen D, Liu B, Zhi C, Golberg D (2006) J Phys Chem B 110:3973CrossRefGoogle Scholar
  13. 13.
    Shen G, Bando Y, Lee C-J (2005) J Phys Chem B 109:10578CrossRefGoogle Scholar
  14. 14.
    Golberg D, Mitome M, Kurashima K, Zhi CY, Tang CC, Bando Y, Lourie O (2006) Appl Phys Lett 88:123101CrossRefGoogle Scholar
  15. 15.
    Bando Y, Mitome M, Golberg D, Kitami Y, Kurashima K, Kaneyama T, Okura Y, Naruse M (2001) J Jpn Appl Phys 40:L1193CrossRefGoogle Scholar
  16. 16.
    “Nanofactory Instruments AB”, https://doi.org/www.nanofactory.com/, as on 9/8/2007
  17. 17.
    Bonasewicz P, Hirschwald W, Neumann G (1987) Appl Surf Sci 28:135CrossRefGoogle Scholar
  18. 18.
    Coppa BJ, Fulton CC, Kiesel SM, Davis RF, Pandarinath C, Burnette JE, Nemanich RJ, Smith DJ (2005) J Appl Phys 97:103517CrossRefGoogle Scholar
  19. 19.
    Wang ZL, Kong XY, Zuo JM (2003) Phys Rev Lett 91:185502CrossRefGoogle Scholar
  20. 20.
    Reimer L (1989) Transmission electron microscopy. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Zhang ZY, Jin CH, Liang XL, Chen Q, Peng L-M (2006) Appl Phys Lett 88:073102CrossRefGoogle Scholar
  22. 22.
    “NIMS Nanotubes Group”, https://doi.org/www.nims.go.jp/nanotube/JMatScience2007.html, as on 15 August 2007
  23. 23.
    Yoshiie T, Iwanaga H, Shibata N, Ichihara M, Takeuchi S (1979) Philos Mag 40:297CrossRefGoogle Scholar
  24. 24.
    Devenish R, Bullough T, Turner P, Humphreys C (1990) Inst Phys Conf Ser 98:215Google Scholar
  25. 25.
    Amelinckx S, Dyck DV, Landuyt JV, Tendeloo GV (1997) Electron microscopy – principles and fundamentals. VCH, WeinheimCrossRefGoogle Scholar
  26. 26.
    Wilkinson J, Ucer KB, Williams RT (2004) Radiat Measure 38:501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pedro M. F. J. Costa
    • 1
    Email author
  • Dmitri Golberg
    • 1
  • Guozhen Shen
    • 1
  • Masanori Mitome
    • 1
  • Yoshio Bando
    • 1
  1. 1.Nanoscale Materials CenterNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations