Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1429–1437 | Cite as

Kirchhoff transformation analysis for determining time/depth dependent chloride diffusion coefficient in concrete

  • Yung-Ming Sun
  • Ta-Peng ChangEmail author
  • Ming-Te Liang
Article

Abstract

This article uses the Kirchhoff transformation method to solve a non-steady one-dimensional diffusion equation when the apparent diffusion coefficient is expressed as a function of time, depth, and concentration of chloride for concrete exposed to chloride environment. The analytical results obtained by the proposed method, which are coincided with those calculated from the Boltzmann–Matano methodology under specific condition, can be used to conveniently predict the chloride diffusion process physically and chemically so that the traditional natural diffusion test to obtain time/depth dependent apparent diffusion coefficient may be greatly simplified. Two new simplified methods to effectively process the experimental results from the natural diffusion test are proposed: one is called the long-specimen-at-one-specific-time method using fewer specimens at one time and the other the short-specimen-at-long-elapsed-time method using more specimens at various service times. Two numerical examples are provided to illustrate the application of these two proposed methods.

Keywords

Diffusion Coefficient Apparent Diffusion Coefficient Chloride Concentration Calcium Silicate Hydrate Chloride Diffusion 

References

  1. 1.
    Kropp J, Hilsdorf HK (1995) In: Performance criteria for concrete durability. E& FN Spon, LondonGoogle Scholar
  2. 2.
    Truc O, Ollivier JP, Carcassès M (2000) Cem Concr Res 30(2):217CrossRefGoogle Scholar
  3. 3.
    Tang L, Nilsson LO (1992) ACI Mater J 89:49Google Scholar
  4. 4.
    Castellote M, Andrade C, Alonso C (1999) Mater Struct 32:180CrossRefGoogle Scholar
  5. 5.
    Friedmann H, Amiri O, Aït-Mokhtar A, Dumargue P (2004) Cem Concr Res 34:1967CrossRefGoogle Scholar
  6. 6.
    Dhir RK, Jones MR, Ahmed HEH, Seneviratne AMG (1990) Mag Concr Res 42(152):177CrossRefGoogle Scholar
  7. 7.
    Castellote M, Andrade C, Alonso C (1999) Cem Concr Res 29(11):1799CrossRefGoogle Scholar
  8. 8.
    Andrade C, Sanjuán MA, Recuero A, Río O (1994) Cem Concr Res 24(7):1214CrossRefGoogle Scholar
  9. 9.
    Stanish K, Thomas M (2003) Cem Concr Res 33:55CrossRefGoogle Scholar
  10. 10.
    Tumidajski PJ, Chan GW, Feldman RF, Strathdee G (1995) Cem Concr Res 25(7):1556CrossRefGoogle Scholar
  11. 11.
    Černý R, Pavlík Z, Rovnaníková P (2004) Cem Concr Compos 26:705CrossRefGoogle Scholar
  12. 12.
    Dhir RK, Jones MR, Ng SLD (1998) Mag Concr Res 50(1):37CrossRefGoogle Scholar
  13. 13.
    Midgley HG, Illston JM (1984) Cem Concr Res 14:546CrossRefGoogle Scholar
  14. 14.
    Maage M, Helland S, Poulsen E, Vennesland Ø, Carlsen JE (1996) ACI Mater J 93-M68:602Google Scholar
  15. 15.
    Zhang T, Gjørv OE (2005) ACI Mater J 102-M33:295Google Scholar
  16. 16.
    Dhir RK, El-Mohr MAK, Dyer TD (1997) Cem Concr Res 27(11):1633CrossRefGoogle Scholar
  17. 17.
    Baroghel Bouny V, Chaussadent T, Raharinaivo A (1995) In: Nilsson LO, Ollivier JP (eds) Chloride penetration into concrete. RILEM, France, p 290Google Scholar
  18. 18.
    Tang L (1999) Cem Concr Res 29:1463CrossRefGoogle Scholar
  19. 19.
    Tang L (1999) Cem Concr Res 29:1469CrossRefGoogle Scholar
  20. 20.
    Tang L, Gulikers J (2007) Cem Concr Res 37:589CrossRefGoogle Scholar
  21. 21.
    Brebbia CA, Telles JC, Wrobl LC (1984) In: Boundary element techniques: theory and application engineering. Springer-Verlag, New YorkGoogle Scholar
  22. 22.
    Kane JH (1994) In: Boundary element analysis: in engineering continuous mechanism. Prentice Hall, EnglewoodGoogle Scholar
  23. 23.
    Gebhart B (1993) In: Heat conduction and mass diffusion. McGraw-Hill Inc, New York, p 19, 28Google Scholar
  24. 24.
    O’Neil PV (2003) In: Advanced engineering mathematics, 5th edn. Brooks/Cole-Thomson Learning Inc., CAGoogle Scholar
  25. 25.
    Wolfram Research (1999) In: Mathematica user manual, version 4.0. Trade Center Drive, Champaign, IL 61820-7237, USAGoogle Scholar
  26. 26.
    Carslaw HS, Jaeger JC (1959) In: Conduction of heat in solids, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Maage M, Helland S, Poulsen E, Vennesland Ǿ, Carlsen JE (1996) ACI Mater J 93(6):602Google Scholar
  28. 28.
    Tumidajski PJ, Chan GW (1996) Cem Concr Res 26(4):551CrossRefGoogle Scholar
  29. 29.
    Liang MT, Lan JJ (2003) J Chin Inst Eng 26(5):647CrossRefGoogle Scholar
  30. 30.
    Liang MT, Lin SM (2003) Cem Concr Res 33:1917CrossRefGoogle Scholar
  31. 31.
    Liang MT, Jin WL, Yang RJ, Huang NM (2005) Cem Concr Res 35:1827CrossRefGoogle Scholar
  32. 32.
    Nokken M, Boddy A, Hooton RD, Thomas MDA (2006) Cem Concr Res 36:200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Construction Engineering, Green Building Materials CenterNational Taiwan University of Science and TechnologyTaipeiTaiwan, ROC
  2. 2.Department of Construction ManagementTung Nan Institute of TechnologyTaipeiTaiwan, ROC
  3. 3.Department of Civil EngineeringChina Institute of TechnologyTaipeiTaiwan, ROC
  4. 4.Department of Shipping and Transportation ManagementNational Taiwan Ocean UniversityKeelungTaiwan, ROC

Personalised recommendations