Advertisement

Journal of Materials Science

, Volume 43, Issue 6, pp 2018–2025 | Cite as

Anomalous electrical properties of nanocrystalline Ni–Zn ferrite

  • A. D. Sheikh
  • V. L. MatheEmail author
Article

Abstract

Nanocrystalline powders of Ni–Zn ferrite (NZFO) having the chemical formula NixZn1−xFe2O4, where x varies as 1, 0.8, 0.6, 0.4, 0.2, and 0, were synthesized by chemical co-precipitation technique. The samples synthesized were characterized by X-ray diffraction (XRD) technique at several stages. As prepared samples at room temperature show absence of Bragg peak indicating that there was no crystalline phase formation of ferrite. The XRD pattern of the samples sintered at 400 °C clearly showed the characteristic Bragg peaks of spinel cubic structure. XRD patterns were further analyzed to calculate the lattice constant, porosity, and jump length of charge carriers. Electrical dc resistivity measurements were carried out with respect to temperature using two probe method. NZFO samples showed abnormal electrical behavior at room temperature. Also abnormal electrical behavior with increase in temperature in the range 600–800 K was observed. Variation of dielectric constant and loss tangent with frequency were studied at room temperature. The electrical and dielectric behavior of the Ni–Zn samples is discussed in the light of literature.

Keywords

Ferrite Octahedral Site Tetrahedral Site ZnFe2O4 Cation Distribution 

Notes

Acknowledgements

A.D. Sheikh is thankful to DST, New Delhi, for the award of JRF fellowship. V.L. Mathe is thankful to DST, New Delhi, for the financial support, FAST TRACK young scientist fellowship, and BOYSCAST fellowship.

References

  1. 1.
    Slick PI (1980) In: Wohlfrath EP (ed) Ferromagnetic materials, vol 2. North hollond, Amsterdam, p 196 and references there inGoogle Scholar
  2. 2.
    Ferrites: Proceedings of sixth international conference on ferrites (ICF6), Yamaguchi T, Abe M (eds) The Japan society of powder and powder Metallurgy, Japan, 1992Google Scholar
  3. 3.
    Morrison SA, Cahill CL, Carpenter EE, Calvin S, Swaminathan R, McHenry ME, Harris VG (2004) J Appl Phys 95:6392CrossRefGoogle Scholar
  4. 4.
    Daniels JM, Rosencwaig A (1970) Can J Phys 48:381CrossRefGoogle Scholar
  5. 5.
    Stoppels D (1996) J Magn Magn Mater 160:323CrossRefGoogle Scholar
  6. 6.
    Lee KH, Cho DH, Jeung SS (1997) J Mater Sci Lett 16:83CrossRefGoogle Scholar
  7. 7.
    Kim CS, Yi YS, Park K-T, Namgung H, Lee JG (1999) J Appl Phys 85:5223CrossRefGoogle Scholar
  8. 8.
    Srivastava AK, Hurben MJ, Wittenauer MA, Kabos P, Patton CE, Rameh R, Dorsey PC, Chrisey DB (1999) J Appl Phys 85:7838CrossRefGoogle Scholar
  9. 9.
    Amado MM, Rogalsk MS, Guimaraes L, Sousa JB, Bibicu I, Welch RG, Palmer SB (1998) J Appl Phys 83:6852CrossRefGoogle Scholar
  10. 10.
    Sheikh AD, Kamble RB, Mathe VL (2006) Proc DAE solid state phys symp 51:235Google Scholar
  11. 11.
    JCPDS card no of NiFe2O4 10-325Google Scholar
  12. 12.
    Rath C, Sahu KK, Anand S, Date SK, Mishra NC, Das RP (1999) J Magn Magn Mater 202:77CrossRefGoogle Scholar
  13. 13.
    Raghavan V (2004) Materials Science and Engineering, 5th edn. Prentice–Hall of India, New DelhiGoogle Scholar
  14. 14.
    Komar AP (1954) Bull Acad Sci USSR Ser Phys 18:122Google Scholar
  15. 15.
    Verma A, Chatterjee R (2006) J Magn Magn Mater 306:313CrossRefGoogle Scholar
  16. 16.
    Mahmud ST, Akther Hossain AKM, Abudul Hakim AKM, Seki M, Kawai T, Tabata H (2006) J Magn Magn Mater 305:269CrossRefGoogle Scholar
  17. 17.
    Puri RK, Sayen V (1989) Proceedings ICF-5, India 245Google Scholar
  18. 18.
    Jeyadevan B, Tohji K, Nakatsuka K (1994) J Appl Phys 76:6325CrossRefGoogle Scholar
  19. 19.
    Varshney U, Churachill RT, Puri RK, Mendiratta RG (1989) Proceedings ICF-5, India 255Google Scholar
  20. 20.
    Verma A, Goel TC, Mendiratta RG, Gupta RG (1999) J Magn Magn Mater 192:271CrossRefGoogle Scholar
  21. 21.
    Verwey EJ, de Boer JH (1936) Rec Trans Chim Phys Bas 55:531CrossRefGoogle Scholar
  22. 22.
    Vishwanathan B, Murthy VRK (1990) Ferrite materials: science and technology. Narosa Publication House, New DelhiGoogle Scholar
  23. 23.
    Liu Y-L, Liu Z-M, Yang Y, Yang H-F, Shen G-L, Yu R-Q (2005) Sens Actuators B 107:600CrossRefGoogle Scholar
  24. 24.
    Solyman S (2006) Ceram Int 32:755CrossRefGoogle Scholar
  25. 25.
    Patil MG, Mahajan VC, Ghatage AK, Patil SA (1996) Ind J Pure Appl Phys 34:1665Google Scholar
  26. 26.
    Ahmed MA, Nimr MK, Tawfik A, Hasab AM (1991) Phys Status Solid A 123:501CrossRefGoogle Scholar
  27. 27.
    Devale AB (1980) Ph. D. Thesis IISc, Nagpur Uni. IndiaGoogle Scholar
  28. 28.
    Kim CS, Lee SW, Park SL (1996) J Appl Phys 79:5428CrossRefGoogle Scholar
  29. 29.
    Mathe VL, Kamble RB (2007) Mater Res Bull In PressGoogle Scholar
  30. 30.
    Maxwell JC (1973) Electricity and magnesium, vol 1. Oxford University press, New york, p 828Google Scholar
  31. 31.
    Wagner KW (1973) Am Phys 40:817Google Scholar
  32. 32.
    Koop CG (1951) Phys Rev 85:121CrossRefGoogle Scholar
  33. 33.
    Zemansky MW (1968) Heat and thermodynamics. McGraw Hill, New York, p 460Google Scholar
  34. 34.
    Rabinikin LT, Novikova ZI (1960) Ferrites, Acad. Naok. USSR, Minsk 146Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Novel Materials Research Laboratory, Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations