Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1630–1637 | Cite as

Propene/1-octene copolymers as a new pervaporative membrane material for wastewater treatment

  • Xiuzhi TianEmail author
  • Xue Jiang
Article

Abstract

Organophilic pervaporation is an interesting and promising membrane technology for wastewater treatment, and its topic is always to develop new membrane materials with high separation and application properties. In this study, a new polymeric membrane material-propene/1-octene copolymers (P-co-Os) were synthesized by means of slurry polymerization process under atmospheric pressure using Ziegler–Natta catalyst (MgCl2/TiCl4/AlEt3). The aim was to investigate the correlation between the copolymeric structures and properties. Results from copolymerization showed that at 50 °C, when the mole ratio of Al in AlEt3 and Ti in TiCl4 was 100 and 1-octene concentration was over 0.168 mol/L, random and low-crystalline P-co-Os were obtained. They were demonstrated to have excellent thermal stability and higher mechanical strength than the generally used PDMS membrane. P-co-Os with about 24.6 mol% 1-octene content, its weight loss started at about 400 °C and break strength was 1.7 MPa. Moreover, from pervaporation measurements with chloroform/water mixtures, it was found that an increase of 1-octene content in P-co-Os resulted in a decrease of glass transition temperature (Tg), and thus the higher permeate flux but lower selectivity appeared. In general, P-co-Os did exhibit prospects for organophilic pervaporation.

Keywords

Copolymerization Composite Membrane Pervaporation AlEt3 Ethylene Propene Diene Monomer 

Notes

Acknowledgements

This article was supported by the National Natural Science Foundation of China (No. 20704018), the Open Project Program of Key Laboratory of Eco-Textiles, Ministry of Education, China (No. KLET0612) and the Natural Science Initial Research Foundation of Jiangnan University (No. 206000-52210671).

References

  1. 1.
    Peng M, Vane LM, Liu SX (2003) J Hazard Mater 98(1–3):69CrossRefGoogle Scholar
  2. 2.
    Lipnizki F, Hausmanns S, Ten P-K, Field RW, Laufenberg G (1999) Chem Eng J 73(2):113CrossRefGoogle Scholar
  3. 3.
    Feng X, Huang RYM (1997) Ind Eng Chem Res 36(4):1048CrossRefGoogle Scholar
  4. 4.
    Ten RK, Field RW (2000) Chem Eng J 55(8):1425CrossRefGoogle Scholar
  5. 5.
    Wijmans JG, Baker RW (1995) J Membr Sci 107(1–2):1CrossRefGoogle Scholar
  6. 6.
    Wijmans JG (2004) J Membr Sci 237(1–2):39CrossRefGoogle Scholar
  7. 7.
    Schaetzel P, Vauclair C, Nguyen QT, Bouzerar NJ (2004) J Membr Sci 244(1–2):117CrossRefGoogle Scholar
  8. 8.
    Schaetzel P, Vauclair C, Luo G, Nguyen QT (2001) J Membr Sci 191(1–2):103CrossRefGoogle Scholar
  9. 9.
    Peng M, Vane LM, Liu SX (2003) J Hazard Mater 98:69CrossRefGoogle Scholar
  10. 10.
    Han S, Puech L, Law RV, Steinke JHG, Livingston A (2002) J Membr Sci 19(1–2):1CrossRefGoogle Scholar
  11. 11.
    Bell CM, Gerner FJ, Strathmann H (1988) J Membr Sci 36:315CrossRefGoogle Scholar
  12. 12.
    Pereira CC, Rufino JRM, Habert AC, Nobrega R, Cabral LMC, Borges CP (2005) J Food Eng 66(1):77CrossRefGoogle Scholar
  13. 13.
    Nijhuis HH, Mulder MHV, Smolders CA (1993) J Appl Polym Sci 47(12):2227CrossRefGoogle Scholar
  14. 14.
    Xu ZK, Feng LX, Wang DL, Yang SL (1991) Die Makromolekulare Chemie 192(8):1835CrossRefGoogle Scholar
  15. 15.
    Tian XZ, Zhu BK, Jiang X, Xu YY (2005) Chinese J Polym Sci 23(6):623CrossRefGoogle Scholar
  16. 16.
    Fu Z, Xu J, Zhang Y, Fan Z (2005) J Appl Polym Sci 97(2):640CrossRefGoogle Scholar
  17. 17.
    Tian X, Zhu B, Xu Y (2005) J Membr Sci 248(1–2):109CrossRefGoogle Scholar
  18. 18.
    Lovisi H, Tavares MIB, Silva NM, Menezes SMC, Maria LCS, Coutinho FBC (2001) Polymer 42(24):9791CrossRefGoogle Scholar
  19. 19.
    Yan D, Wang W-J, Zhu S (1999) Polymer 40(7):1737CrossRefGoogle Scholar
  20. 20.
    Meng LZ, Gong SL, He YB (2003) Analysis of organic spectrum. Wuhan, Wuhan University Publishing House, China, p 144Google Scholar
  21. 21.
    Shen D (1982) Application of FTIR methods in macromolecular research. Beijing, Scientific Publishing House, ChinaGoogle Scholar
  22. 22.
    Li L, Xiao Z, Zhang Z, Tan S (2004) Chem Eng J 97(1):83CrossRefGoogle Scholar
  23. 23.
    Long RB (1965) Ind Eng Chem Res 4:445Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Textiles & Clothing, Key Laboratory of Eco-Textile, Ministry of EducationJiangnan UniversityWuxiChina

Personalised recommendations