Journal of Materials Science

, Volume 43, Issue 4, pp 1340–1353 | Cite as

Thermal properties of polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization

  • Sergei Modestovich LomakinEmail author
  • Lyudmila A. Novokshonova
  • Peter N. Brevnov
  • Alexander N. Shchegolikhin


A comparative study of thermal and thermal-oxidative degradation processes for polyethylene/organically modified montmorillonite (PE-MMT) nanocomposites, prepared by the ethylene intercalative polymerization in situ with or without subsequent addition of an antioxidant is reported. The results of TGA and time/temperature-dependent FTIR spectroscopy experiments have provided evidence for an accelerated formation and decomposition of hydroperoxides during the thermal oxidative degradation tests of PE-MMT nanocomposites in the range of 170–200 °C as compared to the unfilled PE, thus indicating to a catalytic action of MMT. It has been shown that effective formation of intermolecular chemical cross-links in the PE-MMT nanocomposite has ensued above 200 °C as the result of recombination reactions involving the radical products of hydroperoxides decomposition. Apparently, this process is induced by the oxygen deficiency in PE-MMT nanocomposite due to its lowered oxygen permeability. It is shown that the intermolecular cross-linking and dehydrogenation reactions followed by the shear carbonization lead to appreciable increase of thermal-oxidative stability of PE nanocomposite, as compared to that of pristine PE. Notably, the TGA traces for the antioxidant-stabilized PE-MMT nanocomposites recorded in air were quite similar to those obtainable for the non-stabilized PE-MMT nanocomposites in argon. The results of treatment of the experimentally acquired TGA data in frames of an advanced model kinetic analysis are reported and discussed.


Thermal Degradation Process Carbonyl Index Intermolecular Crosslinking Intercalative Polymerization Intermolecular Hydrogen Transfer 



This work is supported by Russian Foundation for Basic Research (Grant No. 06-03-08047) and Federal Agency on Science and Innovations (Contract No. 02.513.11.3161).


  1. 1.
    Messersmith PB, Giannelis EP (1993) Chem Mater 5:1064CrossRefGoogle Scholar
  2. 2.
    Zanetti M, Lomakin S, Camino G (2000) Macromol Mater Eng 279:1CrossRefGoogle Scholar
  3. 3.
    Alexandre M, Dubois P (2000) Mater Sci Eng R 28:1CrossRefGoogle Scholar
  4. 4.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  5. 5.
    Oya A (2000) In: Pinnavaia TJ, Beall GW (eds) Polymer clay nanocomposites. Wiley, LondonGoogle Scholar
  6. 6.
    Gilman JW, Kashiwagi T, Nyden M, Brown JET, Jackson CL, Lomakin SM, Gianellis EP, Manias E (1998) In: Al-Maliaka S, Golovoy A, Wilkie CA (eds) Chemistry and technology of polymer additives. Blackwell Scientific, London, p 249Google Scholar
  7. 7.
    Lomakin SM, Dubnikova IL, Berezina SM, Zaikov GE (2005) Polym Int 54(7):999CrossRefGoogle Scholar
  8. 8.
    Lomakin SM, Zaikov GE (2003) Modern polymer flame retardancy. VSP Int. Sci. Publ. Utrecht, Boston, p 272Google Scholar
  9. 9.
    Gilman JW (1999) Appl Clay Sci 15:31CrossRefGoogle Scholar
  10. 10.
    Gilman GW, Jackson CL, Morgan AB, Harris RH, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips S (2000) Chem Mater 12:1866CrossRefGoogle Scholar
  11. 11.
    Kashiwagi T, Harris RH Jr, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR (2004) Polymer 45:881CrossRefGoogle Scholar
  12. 12.
    Kovaleva NYu, Brevnov PN, Grinev VG, Kuznetsov SP, Pozdnyakova IV, Chvalun SN, Sinevich EA, Novokshonova LA (2004) Polym Sci Ser A 46(6):651Google Scholar
  13. 13.
    Voigt J (1966) Die Stabilisierung der Kunstoffe Gegen Licht und Wärme. Springer-Verlag, Berlin, p 542CrossRefGoogle Scholar
  14. 14.
    Shchegolikhin AN, Lazareva OL (1997) Int J Vib Spect ( 1(4):95Google Scholar
  15. 15.
    Lacey DJ, Dudler V (1996) Polym Degrad Stab 51:1011Google Scholar
  16. 16.
    Paabo M, Levin BC (1987) Fire Mater 11:55CrossRefGoogle Scholar
  17. 17.
    Lattimer RP (1995) J Anal Appl Pyrolysis 31:203CrossRefGoogle Scholar
  18. 18.
    Kuroki T, Sawaguchi T, Niikuni S, Ikemura T (1982) Macromolecules 15:1460CrossRefGoogle Scholar
  19. 19.
    Kiran E, Gillham JK (1976) J Anal Appl Pyrolysis 20:2045–2068Google Scholar
  20. 20.
    Blazso M (1993) J Anal Appl Pyrolysis 25:25CrossRefGoogle Scholar
  21. 21.
    Hornung U, Hornung A, Bockhorn H (1998) Chem Ing Tech 70:45Google Scholar
  22. 22.
    Hornung U, Hornung A, Bockhorn H (1998) Chem Eng Technol 21:332–337CrossRefGoogle Scholar
  23. 23.
    Bockhorn H, Hornung A, Horung U (1998) J Anal Appl Pyrolysis 46:1CrossRefGoogle Scholar
  24. 24.
    Opfermann J (2000) J Thermal Anal Cal 60:641CrossRefGoogle Scholar
  25. 25.
    Friedman HL (1965) J Polym Sci C6:175Google Scholar
  26. 26.
    Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) J Anal Appl Pyrolysis 48:93CrossRefGoogle Scholar
  27. 27.
    Grassie N, Scott G (1985) Polymer degradation and stabilization. Cambridge University Press, Cambridge, p 275Google Scholar
  28. 28.
    Gugumus F (2000) Polym Degrad Stab 69:23CrossRefGoogle Scholar
  29. 29.
    Lacoste L, Carlsson DJ (1992) J Polym Sci Part A Polym Chem 30:493CrossRefGoogle Scholar
  30. 30.
    Gugumus F (2002) Polym Degrad Stab 76(2):329CrossRefGoogle Scholar
  31. 31.
    Gugumus F (2002) Polym Degrad Stab 77(1):147CrossRefGoogle Scholar
  32. 32.
    Benson SW (1976) Thermochemical kinetics. Wiley, New York, p 114Google Scholar
  33. 33.
    Zaragoza DF (2000) Organic synthesis on solid phase. Wiley, New YorkGoogle Scholar
  34. 34.
    Xie W, Gao ZM, Pan WP, Hunter D, Singh A, Vaia R (2001) Chem Mater 13:2980Google Scholar
  35. 35.
    Yablokov VA (1980) Russ Chem Rev 49:833CrossRefGoogle Scholar
  36. 36.
    Plesnicar B (1983) In: Patai S (ed) The chemistry of functional groups, peroxides. Wiley, New York, p 521Google Scholar
  37. 37.
    Bugajny M, Bourbigot S, Bras ML, Delobel R (1999) Polym Int 48:264CrossRefGoogle Scholar
  38. 38.
    Xie RC, Qu BJ, Hu KL (2001) Polym Degrad Stab 72:313CrossRefGoogle Scholar
  39. 39.
    Serratosa JM, Bradlay WF (1958) J Phys Chem 62:1164CrossRefGoogle Scholar
  40. 40.
    Zanetti M, Bracco P, Costa L (2004) Polym Degrad Stab 85:657CrossRefGoogle Scholar
  41. 41.
    Morlat S, Mailhot B, Gonzalez D, Gardette S (2004) J Chem Mater 16:377CrossRefGoogle Scholar
  42. 42.
    Desai SM, Pandey JK, Singh RP (2001) Macromol Symp 169:121CrossRefGoogle Scholar
  43. 43.
    Brown DW, Floyd AJ, Sainsbury M (1988) Organic spectroscopy. WileyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sergei Modestovich Lomakin
    • 1
    Email author
  • Lyudmila A. Novokshonova
    • 2
  • Peter N. Brevnov
    • 2
  • Alexander N. Shchegolikhin
    • 1
  1. 1.N.M. Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.N.N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations