Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1214–1219 | Cite as

Synthesis of europium-doped yttrium hydroxide and yttrium oxide nanosheets

  • Atsuya TowataEmail author
  • Manickam Sivakumar
  • Kyuichi Yasui
  • Toru Tuziuti
  • Teruyuki Kozuka
  • Yasuo Iida
Article

Abstract

A new approach has been developed for the preparation of Y(OH)3:Eu and Y2O3:Eu nanosheets using the sol–gel method and hydrothermal reactions. XRD patterns showed that the product was purely hexagonal-phase Y(OH)3. TEM images revealed that the nanosheets are square shaped (1 × 1 μm2) with a thickness of several tens of nanometers. In addition, it was found that cubic-phase Y2O3 nanosheets can be obtained by calcination of Y(OH)3 at 900 °C for 1 h. More importantly, the thus-prepared Y(OH)3:Eu and Y2O3:Eu nanosheet phosphors were found to exhibit a relatively high photoluminescence (PL) intensity.

Keywords

Y2O3 Scanning Electron Microscope Micrograph Boehmite Differential Thermal Analysis Curve Magnetic Dipole Transition 

References

  1. 1.
    Ronda CR (1995) J Alloy Compd 225:534CrossRefGoogle Scholar
  2. 2.
    Jing X, Ireland T, Gibbons C (1999) J Electrochem Soc 146:4654CrossRefGoogle Scholar
  3. 3.
    Kim CH, Kwon II E, Park CH, Hwang YJ, Bae HS, Yu BY, Pyun CH, Hong GY (2000) J Alloy Compd 311:33CrossRefGoogle Scholar
  4. 4.
    Sordelet D, Akinc M (1988) J Colloid Interf Sci 122:47CrossRefGoogle Scholar
  5. 5.
    Ikegami T, Li J, Mori T (2002) J Am Ceram Soc 85:1725CrossRefGoogle Scholar
  6. 6.
    Huang H, Xu GQ, Chin WS, Gan LM, Chew CH (2002) Nanotechnology 123:318CrossRefGoogle Scholar
  7. 7.
    Dhanaraj J, Janannathan R, Kutty TRN, Lu CH (2001) J Phys Chem B 105:11098CrossRefGoogle Scholar
  8. 8.
    Tomaszewski H, Weglarz H, Gryse RD (1997) J Euro Ceram Soc 17:403CrossRefGoogle Scholar
  9. 9.
    Davolos MR, Feliciano S, Pires AM, Marques RFC, Jafelicci M Jr (2003) J Solid State Chem 171:268CrossRefGoogle Scholar
  10. 10.
    Konrad A, Fries T, Gahn A, Kummer F, Herr U, Tidecks R, Samwer K (1999) J Appl Phys 86:3129CrossRefGoogle Scholar
  11. 11.
    Kang YC, Roh HS, Park SB (2001) J Am Ceram Soc 84:447CrossRefGoogle Scholar
  12. 12.
    Camenzind A, Strobel R, Pratsinis SE (2005) Chem Phys Lett 415:193CrossRefGoogle Scholar
  13. 13.
    Tao Y, Zhao G, Zhang W, Xia S (1997) Mater Res Bull 32:501CrossRefGoogle Scholar
  14. 14.
    Mckittrick J, Shea LE, Bacalski CF, Bosze EJ (1999) Displays 19:169CrossRefGoogle Scholar
  15. 15.
    Kimura T, Kanazawa T, Yamaguchi T (1983) J Am Ceram Soc 66:597CrossRefGoogle Scholar
  16. 16.
    Feng Q, Hirasawa M, Yanagisawa K (2001) Chem Mater 13:290CrossRefGoogle Scholar
  17. 17.
    El-Toni AM, Yin S, Sato T (2006) Mater Lett 60:185CrossRefGoogle Scholar
  18. 18.
    Fang YP, Xu AW, You LP, Song RQ, Yu JC, Zhang HX, Li Q, Liu HQ (2003) Adv Funct Mater 13:955CrossRefGoogle Scholar
  19. 19.
    Nishide T, Shibata M (2001) J Sol-Gel Sci Tech 21:189CrossRefGoogle Scholar
  20. 20.
    Inoue M, Kondo Y, Inui T (1988) Inorg Chem 27:215CrossRefGoogle Scholar
  21. 21.
    Sato T, Imaeda S, Sato K (1988) Thermochimica Acta 133:79CrossRefGoogle Scholar
  22. 22.
    Sharma PK, Jilavi MH, Varadan VK, Schmidt H (2002) J Phys Chem Solids 63:171CrossRefGoogle Scholar
  23. 23.
    Tang Q, Liu Z, Li S, Zhang S, Liu X, Qian Y (2003) J Cryst Growth 259:208CrossRefGoogle Scholar
  24. 24.
    Xu AW, Rang YP, You LP, Liu HQ (2003) J Am Chem Soc 125:1494CrossRefGoogle Scholar
  25. 25.
    Devlin K, O’kelly B, Tang ZR, Mcdonagh C, Mcglip (1991) J Non-Cryst Solids 135:8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Atsuya Towata
    • 1
    Email author
  • Manickam Sivakumar
    • 2
  • Kyuichi Yasui
    • 1
  • Toru Tuziuti
    • 1
  • Teruyuki Kozuka
    • 1
  • Yasuo Iida
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
  2. 2.Bharathidasan Institute of TechnologyBharathidasan UniversityTrichyIndia

Personalised recommendations