Journal of Materials Science

, Volume 43, Issue 4, pp 1400–1405 | Cite as

Conductive polymer preparation under extreme or non-classical conditions

  • W. M. de AzevedoEmail author
  • R. A. de Barros
  • E. F. da SilvaJr


Polyaniline (PANI) emeraldine salt form and PANI/silver composites have been synthesized by sonochemical and ionizing radiation methods. These composite materials were obtained through sonication and γ irradiation of an aqueous solution of aniline and silver nitrate, in room temperature, respectively. The mechanisms suggested to explain the formation of these products are based on the fact that both methods produce hydroxyl radical OH and hydrogen radical H, where hydroxyl radical OH acts as an oxidizing agent in the polymerization process of aniline monomer; and hydrogen radical H, as a reducing agent for silver ions. Spectroscopic, X-ray, and SEM measures show that PANI and silver nano particles of 40 nm average diameter are produced with ultrasonic methods, whereas silver nano particles of 60 nm average, and fibrillar, highly network morphology for PANI with 60 nm fibrillar diameter average are obtained using γ radiation).


PANI Aniline Silver Nitrate Silver Particle Ultrasound Wave 



The authors thank Mr. Francisco Rangel for his assistance on SEM measurements, Marcela Bianca for comments and suggestions for the manuscript, and acknowledge financial support received during the development of this work from REMAN contract N. 550.015/01-9, CNPQ contract N.305587/2003-0 and N. 473.144/03-4 and RENAMI.


  1. 1.
    Van Eldik R, Hubbard CD (1996) Chemistry under extreme or non classical conditions. Wiley, New YorkGoogle Scholar
  2. 2.
    Lindstrom O, Lamm O (1951) J Phys Colloid Chem 55(7):1139CrossRefGoogle Scholar
  3. 3.
    Price GJ, Norris DJ, West PJ (1992) Macromolecules 25:6447CrossRefGoogle Scholar
  4. 4.
    Price GJ, Patel AM (1992) Polymer 33:4423CrossRefGoogle Scholar
  5. 5.
    Peters D (1996) J Mater Chem 6(10):1605CrossRefGoogle Scholar
  6. 6.
    Suslick KS, Choe SB, Cichowalas AA, Grinstaff MW (1991) Nature 353:414CrossRefGoogle Scholar
  7. 7.
    Grinstaff MW, Cichowalas AA, Choe SB, Suslick KS (1992) Ultrasonics 30:68CrossRefGoogle Scholar
  8. 8.
    Kruus P (1983) Ultrasonics 21:201CrossRefGoogle Scholar
  9. 9.
    Wizel S, Prozorov R, Cohen Y, Aurbach D, Margel S, Gedanken A (1998) J Mater Res 13:211CrossRefGoogle Scholar
  10. 10.
    Wizel S, Margel S, Gedanken A, Rojas TC, Fernandez A, Prozorov R (1999) J Mater Res 14:3913CrossRefGoogle Scholar
  11. 11.
    Atobe M, Chowdhury AN, Fuchigami T, Nonaka T (2003) Ultrason Sonochem 10:77CrossRefGoogle Scholar
  12. 12.
    Ryu JG, Kim H, Lee JW (2004) Polym Eng Sci 44:1198CrossRefGoogle Scholar
  13. 13.
    Xia H.S, Wang Q (2002) Chem Mater 14:2158CrossRefGoogle Scholar
  14. 14.
    Laranjeiras JMG, Khoury HJ, de Azevedo WM, de Vasconcelos EA, da Silva Jr EF (2003) Mater Charact 50:127CrossRefGoogle Scholar
  15. 15.
    Pacheco APL, Araújo ES, de Azevedo WM (2003) Mater Charact 50:245CrossRefGoogle Scholar
  16. 16.
    Wolszczak M, Kroh J, Abdel-Hamid M (1996) Radiat Phys Chem 47:859CrossRefGoogle Scholar
  17. 17.
    Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) Chem Mater 17:5941CrossRefGoogle Scholar
  18. 18.
    de Azevedo WM, de Oliveira Luna AJH, Silva EFVBN, Silva RO (2006) Ultrason Sonochem 13:433CrossRefGoogle Scholar
  19. 19.
    de Azevedo WM, Lima APD, de Araújo ES (1999) Radiat Prot Dosimetry 84:77CrossRefGoogle Scholar
  20. 20.
    Arnold GW, Borders JA (1977) J Appl Phys 48:1488CrossRefGoogle Scholar
  21. 21.
    Wan M (1989) Synth Met 31:51CrossRefGoogle Scholar
  22. 22.
    Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Phys Rev Lett 59:464CrossRefGoogle Scholar
  23. 23.
    Zhu YJ, Qian YT, Zhang MW, Chen ZY, Lu B, Wang CS (1993) Mater Lett 17:314CrossRefGoogle Scholar
  24. 24.
    Inoue M, Navarro RE, Ionoue MB (1989) Synth Met 30:199CrossRefGoogle Scholar
  25. 25.
    Salaneck WR, Liedberg B, Inganas O, Erlandsson R, Lundstron I, MicDiarmid AG, Halpern M, Somasiri NLD (1985) Mol Cryst Liq Cryst 121:191CrossRefGoogle Scholar
  26. 26.
    Mu S, Kan J (1998) Synth Met 98:51CrossRefGoogle Scholar
  27. 27.
    Henglein A (1992) In: Mason TJ (ed) Advances in sonochemistry, vol 3. JAI Press, London, p 1Google Scholar
  28. 28.
    Kondo T, KinsChenbaum LJ, Kim H, Riesz P (1993) J Phys Chem 97:522CrossRefGoogle Scholar
  29. 29.
    Langford JI, Wilson AJC (1978) J Appl Cryst 11:102CrossRefGoogle Scholar
  30. 30.
    Barrett CS, Massalski TB (1966) Struture of the metals. McGraw-Hill, New York, p 155Google Scholar
  31. 31.
    Wagner CNJ, Aqua EN (1964) Adv X-ray Anal 7:46Google Scholar
  32. 32.
    Song W, Humphrey BD, MacDiarmid AG (1986) J Chem Soc Faraday Trans 1 82:2385Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • W. M. de Azevedo
    • 1
    Email author
  • R. A. de Barros
    • 1
  • E. F. da SilvaJr
    • 2
  1. 1.Departamento de Química FundamentalCCEN-UFPE, Cidade UniversitáriaRecifeBrazil
  2. 2.Departamento de FísicaCCEN-UFPE, Cidade UniversitáriaRecifeBrazil

Personalised recommendations