Journal of Materials Science

, Volume 43, Issue 4, pp 1205–1213 | Cite as

Preparation of Semi-aromatic polyamide(PA)/multi-wall carbon nanotube (MWCNT) composites and its dynamic mechanical properties

  • Rui SongEmail author
  • Debin Yang
  • Linghao He


Well dispersed semi-aromatic polyamide(PA)/multi-wall carbon nanotube (MWCNT) composite was prepared through high-speed shearing method in the presence of surfactant sodium dodecylbenzene sulfonate (SDBS). Further analysis of morphology, crystallization, and dynamical mechanical properties shows the presence of SDBS helps to disperse the MWCNT and largely enhance the mechanical property. In comparison with neat PA component, the storage modulus (E′) of the blend system at 90 °C is 3.5 times larger than PA with MWCNT load ratio of 3 wt.%; and meanwhile the glass transition temperature (Tg) of PA component increases about 17 °C; Similar phenomena have not found in MWCNT/PA composite without surfactant. Simultaneously, as DSC and morphology measurements indicate, the filled MWCNT does not show tremendous effect on the crystalline phase and crystallinity of PA, which imply that the increasing mechanical property for composites is due to the strengthening effect of MWCNT itself, not being caused by the change of crystalline phase and crystallinity by the addition of MWCNT. The increasing Tg, indicative of the restricting movement of PA chains, is most probably ascribe to the strong interaction presented between MWCNT and PA chains.


Surfactant Storage Modulus Ultrahigh Molecular Weight Polyethylene Dynamic Mechanic Thermal Analysis Sodium Dodecylbenzene Sulfonate 



This work was partially subsidized by Henan Innovation Project for University Prominent Research Talents (“HAIPURT”) program.


  1. 1.
    Wang ZL, Poncharal P, de Heer WA (1999) First IUPAC workshop on advanced materials: nanostructured systems, Hong Kong, July 14–18Google Scholar
  2. 2.
    Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188CrossRefGoogle Scholar
  3. 3.
    Calvert PD (1999) Nature 399:210CrossRefGoogle Scholar
  4. 4.
    Carran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, Mccarthy B, Maier S, Strevens A (1998) Adv Mater 10:1091CrossRefGoogle Scholar
  5. 5.
    Liu L, Barber AH, Nuriel S, Wagner HD (2005) Adv Funct Mater 15:975CrossRefGoogle Scholar
  6. 6.
    Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Polymer 45:739CrossRefGoogle Scholar
  7. 7.
    Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP (2005) Polymer 46:439CrossRefGoogle Scholar
  8. 8.
    Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Chem Mater 12:1049CrossRefGoogle Scholar
  9. 9.
    Ruan SL, Gao P, Yang XG, Yu TX (2003) Polymer 44:5643CrossRefGoogle Scholar
  10. 10.
    Chen JZ, Qu LJ, Li XF, Jiang AJ, Niu MJ, Wang JW (2005) J Appl Polymer Sci 97:1586CrossRefGoogle Scholar
  11. 11.
    Liu LQ, Zhang S, Hu TJ, Guo ZX, Ye C, Dai LM, Zhu DB (2002) Chem Phys Lett 359:191CrossRefGoogle Scholar
  12. 12.
    Qin Y, Liu L, Shi J, Wu W, Zhang J, Guo Z, Li Y, Zhu D (2003) Chem Mater 15:3256CrossRefGoogle Scholar
  13. 13.
    Dalmas F, Chazeau L, Gauthier C, Masenelli-Varlot K, Dendievel R, Cavaille JY, ForrÓ L (2005) J Polym Sci: Part B: Polym Phys 43:1186CrossRefGoogle Scholar
  14. 14.
    Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Nano Lett 3:1379CrossRefGoogle Scholar
  15. 15.
    Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Science 290:1331CrossRefGoogle Scholar
  16. 16.
    Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic Press, San DiegoGoogle Scholar
  17. 17.
    Konyushenko EN, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang J-Y, Chen K-H, Sapurina I (2006) Polymer 47:5715CrossRefGoogle Scholar
  18. 18.
    Baibarac M, Baltog I, Lefrant S, Meveller JY, Chauver G (2003) Chem Mater 15:4149CrossRefGoogle Scholar
  19. 19.
    Ferrer-Anglada N, Kaempgen M, Skákalová V, Dettlaf-Weglikowska U, Roth S (2004) Diam Relat Mater 13:256CrossRefGoogle Scholar
  20. 20.
    Gao C, Jin YZ, Kong H, Whitby RL, Acquah SF, Chen GY (2005) J Phys Chem B 109:11925CrossRefGoogle Scholar
  21. 21.
    Zeng H, Gao C, Yan D (2006) Adv Funct Mater 16:812CrossRefGoogle Scholar
  22. 22.
    Zeng H, Gao C, Wang Y, Paul CP, Kong H, Cui X, Yan D (2006) Polymer 47:113CrossRefGoogle Scholar
  23. 23.
    Arimoto H (1964) J Polym Sci A2:2283Google Scholar
  24. 24.
    Hummel DO (1965) Pure Appl Chem 11:497CrossRefGoogle Scholar
  25. 25.
    Frayer PD, Koening JL, Lando JB (1972) J Macromol Sci Phys B6:129CrossRefGoogle Scholar
  26. 26.
    Benedict LX, Louie SG, Cohen ML (1996) Solid State Commun 100:177CrossRefGoogle Scholar
  27. 27.
    Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4614CrossRefGoogle Scholar
  28. 28.
    Huxtable ST, Cahill GG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey ML, Strano MS, Siddons G, Shim M, Keblinski P (2003) Nat Mater 2:731CrossRefGoogle Scholar
  29. 29.
    Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) J Am Chem Soc 127:847Google Scholar
  30. 30.
    Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S (2005) J Mater Sci 37:3915. doi: CrossRefGoogle Scholar
  31. 31.
    Savin DA, Pyun J (2002) J Polym Sci Part B: Polym Phys 40:2667CrossRefGoogle Scholar
  32. 32.
    Yao Z, Braidy N, Botton GA, Adronov A (2003) J Am Chem Soc 125:16015CrossRefGoogle Scholar
  33. 33.
    Liu TX, Shen L, Chow SY, Zhang WD (2004) Macromolecules 37:7214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Materials and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.College of Chemistry and Chemical EngineeringGraduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations