Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1492–1496 | Cite as

Fabrication of nanosized metallic copper by electrochemical milling process

  • Da-Wei ZhangEmail author
  • Chun-Hua Chen
  • Jin Zhang
  • Fei Ren
Article

Abstract

Using a copper oxide powder of micrometer size as the starting electrode material in CuO/Li cells, copper oxide (CuO) can be electrochemically reduced into metal particles of smaller sizes in a controllable way. A novel electrochemical milling (ECM) method is developed for a “top–down” synthesis of nanometer-scaled metal particles. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) were employed to characterize the structure of copper particles obtained by the electrochemical reduction. The influences of CuO precursors, current density, and operating temperature on the final products were also studied. It is found that the latter two factors had pronounced effects on the obtained copper products.

Keywords

Li2O Copper Particle Copper Product Large Current Density Small Current Density 

Notes

Acknowledgements

This study was supported by National Science Foundation of China (Grant No. 20703013 and 20471057). We are also grateful to The Ministry of Education (SRFDP No. 2003035057) and the PD Foundation of China (Grant No. 20070410218).

References

  1. 1.
    Zhang Z, Sun X, Dresselhaus MS, Ying JY (2000) Phys Rev B 61:4850CrossRefGoogle Scholar
  2. 2.
    Wang ZL (2000) Adv Mater 12:1295CrossRefGoogle Scholar
  3. 3.
    Sun L, Searson PC, Chien CL (2001) Appl Phys Lett 79:4429CrossRefGoogle Scholar
  4. 4.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1298CrossRefGoogle Scholar
  5. 5.
    Monson CF, Woolley AT (2003) Nano Lett 3:359CrossRefGoogle Scholar
  6. 6.
    Yen MY, Chiu CW, Hsia CH, Chen FR, Kai JJ, Lee CY, Chiu HT (2003) Adv Mater 15:235CrossRefGoogle Scholar
  7. 7.
    Tanori J, Pileni MP (1997) Langmuir 13:639CrossRefGoogle Scholar
  8. 8.
    Ziegler KJ, Harrington PA, Ryan KM, Crowley T, Holmes JD, Morris MA (2003) J Phys: Condens Mat 15:8303Google Scholar
  9. 9.
    Wang JW, Li YD (2003) Adv Mater 15:445CrossRefGoogle Scholar
  10. 10.
    Motoyama M, Fukunaka Y, Sakka T, Ogata YH, Kikuchi S (2005) J Electroanal Chem 584:84CrossRefGoogle Scholar
  11. 11.
    Gao T, Meng GW, Wang YW, Sun SH, Zhang LD (2002) J Phys: Condens Mat 14:355Google Scholar
  12. 12.
    Zhang MZ, Wang Y, Yu GW, Wang M, Peng RW, Weng YY, Ming NB (2004) J Phys: Condens Mat 16:695Google Scholar
  13. 13.
    Molares MET, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Vetter J (2001) Adv Mater 13:62CrossRefGoogle Scholar
  14. 14.
    Lisiecki I, Filankembo A, Sack-Kongeh H, Eeiss K, Pileni MP, Urban J (2000) Phys Rev B 61:4968CrossRefGoogle Scholar
  15. 15.
    Liu ZP, Yang Y, Liang JB, Hu ZK, Li S, Peng S, Qian YT (2003) J Phys Chem B 107:12658CrossRefGoogle Scholar
  16. 16.
    Chang YH, Wang HW, Chiu CW, Cheng DS, Yen MY, Chiu HT (2002) Chem Mater 14:4334CrossRefGoogle Scholar
  17. 17.
    Han WK, Choi JW, Hwang GH, Hong SJ, Lee JS, Kang SG (2006) Appl Surf Sci 252:2832CrossRefGoogle Scholar
  18. 18.
    Li CM, Lei H, Tang YJ, Luo JS, Liu W, Chen ZM (2004) Nanotechnology 15:1866CrossRefGoogle Scholar
  19. 19.
    Wang PI, Zhao YP, Wang GC, Lu TM (2004) Nanotechnology 15:218CrossRefGoogle Scholar
  20. 20.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496CrossRefGoogle Scholar
  21. 21.
    Grugeon S, Laruelle S, Urbina HR, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285CrossRefGoogle Scholar
  22. 22.
    Debart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) J Electrochem Soc 148:A1266CrossRefGoogle Scholar
  23. 23.
    Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) J Phys Chem B 108:5547CrossRefGoogle Scholar
  24. 24.
    Zhang DW, Chen CH, Zhang J, Ren F (2005) Chem Mater 17:5242CrossRefGoogle Scholar
  25. 25.
    Yu Y, Chen CH, Shui JL, Xie S (2005) Angew Chem Int Ed 44:7085CrossRefGoogle Scholar
  26. 26.
    Hu YS, Guo YG, Sigle W, Hore S, Balaya P, Maier J (2006) Nat Mater 5: 713CrossRefGoogle Scholar
  27. 27.
    Burbank J (1966) J Electrochem Soc 113:10CrossRefGoogle Scholar
  28. 28.
    Novak P (1985) Electrochim Acta 30: 1687CrossRefGoogle Scholar
  29. 29.
    Zhang DW, Yi TH, Chen CH (2005) Nanotechnology 16:2338CrossRefGoogle Scholar
  30. 30.
    Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L, Galy J, Tarascon JM (2003) Nat Mater 2:755CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Da-Wei Zhang
    • 1
    • 2
    Email author
  • Chun-Hua Chen
    • 2
  • Jin Zhang
    • 2
  • Fei Ren
    • 2
  1. 1.Department of Chemical Engineering and TechnologyHefei University of TechnologyHefeiP.R. China
  2. 2.Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations