Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1234–1240 | Cite as

Ultraporous monoliths of alumina prepared at room temperature by aluminium oxidation

  • Jean-Louis VignesEmail author
  • Claude Frappart
  • Thomas Di Costanzo
  • Jean-Claude Rouchaud
  • Leo Mazerolles
  • Daniel Michel
Article

Abstract

The oxidation of aluminium through a mercury film usually leads to unorganized filaments or fibrous powders of hydrated alumina. Here, we show that the addition of a small amount of silver in the mercury considerably modifies the growth process, and that large sized monoliths can be obtained through a new process. Regular growth can be maintained at a typical rate of 2.1 μm s−1 (∼0.75 cm/h) for several hours. The samples consist of tangled nanometric fibres and have an open porosity of 99%. The influence of various parameters has been studied and optimal conditions for regular growth have been determined. Anhydrous alumina monoliths with a nanometric microstructure and a high-specific area are obtained after thermal treatments that remove water.

Keywords

Aluminium Plate Porous Alumina Hydrated Alumina Alumina Fiber Liquid Mercury 

Notes

Acknowledgements

The authors are grateful to Mr. Dubos and Mr. Leroy from the Centre de Recherche Pechiney-Alcan (Voreppe, France) and Mr. Fernandez (Alcan, Mercus, France) for supplying us with high-purity and doped aluminium samples.

References

  1. 1.
    Wislicenus H (1908) Kolloid-Z 2:11Google Scholar
  2. 2.
    Brown MH, Binger WW, Brown RH (1952) Corrosion 8:155CrossRefGoogle Scholar
  3. 3.
    Bodle WW, Attari A, Serauskaus R (1986) In: Proceedings of sixth international conference on liquified natural gas, Kyoto, Japan, p 1Google Scholar
  4. 4.
    Pinnel MR, Bennet JE (1972) J Mater Sci 7:1016, doi:  https://doi.org/10.1007/BF00550065
  5. 5.
    Watson JHL, Vallejo-Freire A, De Souza Santos P, Parsons J (1957) Kolloid-Z 154:4CrossRefGoogle Scholar
  6. 6.
    Bruce LA, West GW (1974) J Mater Sci Lett 9:335CrossRefGoogle Scholar
  7. 7.
    Markel EJ, Reddick E, Napper LA, Van Zee JW (1994) J Non-Cryst Solids 180:32CrossRefGoogle Scholar
  8. 8.
    Beauvy M, Vignes J-L, Michel M, Mazerolles L, Frappart C, Di Costanzo T, patent (CNRS-CEA) n°FR2847569, 28-05-2004Google Scholar
  9. 9.
    Vignes J-L, Mazerolles L, Michel D (1997) Key Eng Mater 132–136:432CrossRefGoogle Scholar
  10. 10.
    Iler RK (1961) J Am Ceram Soc 44:618CrossRefGoogle Scholar
  11. 11.
    Badkar PA, Bailley JE (1976) J Mater Sci 11:1794, doi:  https://doi.org/10.1007/BF00708257
  12. 12.
    Levin I, Brandon D (1998) J Am Ceram Soc 81:1995CrossRefGoogle Scholar
  13. 13.
    Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. A.S.M. Int. Materials Park, Ohio, vol 3, p 2138, vol 1, p 43Google Scholar
  14. 14.
    Huang Z-R, Jiang D, Michel D, Mazerolles L, Ferrand A, Di Costanzo T, Vignes J-L (2002) J Mater Res 17:3177CrossRefGoogle Scholar
  15. 15.
    Mazerolles L, Michel D, Di Costanzo T, Vignes J-L (2002) Ceram Trans 135:227Google Scholar
  16. 16.
    Mazerolles L, Michel D, Vignes J-L, Di Costanzo T, Huang Z, Jiang D (2003) Ceram Eng Sci Proc 24:105CrossRefGoogle Scholar
  17. 17.
    Logie V, Maire G, Michel D, Vignes J-L (1999) J Catal 188:90CrossRefGoogle Scholar
  18. 18.
    Di Gregorio F, Keller V, Di Costanzo T, Vignes J-L, Michel D, Maire G (2001) Appl Catal A Gen 218:13CrossRefGoogle Scholar
  19. 19.
    Bai BJ, Vignes J-L, Fournier T, Michel D (2002) Adv Eng Mat 4:701CrossRefGoogle Scholar
  20. 20.
    Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Olafsen Sjastad A (2007) J Catal 249:250CrossRefGoogle Scholar
  21. 21.
    Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H (2005) Appl Catal A Gen 287:135CrossRefGoogle Scholar
  22. 22.
    Rinaldi R, Fujiwara FY, Holderich W, Schuchardt U (2006) J Catal 244:92CrossRefGoogle Scholar
  23. 23.
    Mazaleyrat F, Varga LK (2000) J Magn Magn Mater 215–216:253CrossRefGoogle Scholar
  24. 24.
    Hodama RH (1999) J Magn Magn Mater 200:359CrossRefGoogle Scholar
  25. 25.
    Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Crit Rev Solid State Mater Sci 29:111CrossRefGoogle Scholar
  26. 26.
    Cao L, Bornscheuer UT, Schmid RD (1999) J Mol Catal B: Enzym 6:279CrossRefGoogle Scholar
  27. 27.
    Tischer W, Kasche V (1999) Trends Biotechnol 17:326CrossRefGoogle Scholar
  28. 28.
    Livage J, Coradin T, Roux C (2001) J Phys: Cond Matter 13:R673Google Scholar
  29. 29.
    Nguyen-Ngoc H, Tran-Minh C (2007) Mater Sci Eng C 27:607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jean-Louis Vignes
    • 1
    Email author
  • Claude Frappart
    • 2
  • Thomas Di Costanzo
    • 2
  • Jean-Claude Rouchaud
    • 2
  • Leo Mazerolles
    • 2
  • Daniel Michel
    • 2
  1. 1.Laboratoire d’Ingénierie des Matériaux et des Hautes PressionsUPR 1311 du CNRS et Université Paris 13VilletaneuseFrance
  2. 2.Centre d’Etudes de Chimie MétallurgiqueUPR 2801 du CNRSVitry-sur-Seine CedexFrance

Personalised recommendations